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ABSTRACT

This thesis is a continuation of optimization modeling research conducted at the Naval
Postgraduate School for the U.S. Air Force Studies and Analyses Agency. That work
resulted in Throughput II, a multi-period model for determining the maximum on-time
throughput of cargo and passengers that can be transported with a given fleet over a given
network, subject to appropriate physical and policy constraints. This and other existing
deterministic strategic airlift models assume all data are known prior to making a decision,
often times these assumptions are unrealistic. One such assumption is aircraft reliability.
This thesis addresses the uncertainty of aircraft reliability, which, if ignored, can result in
models that are overly optimistic with respect to throughput capability. To address this
issue, this thesis adds a stochastic e*tension to Throughput II, resulting in a two-stage
stochastic linear program with recourse that is solved using Benders decomposition. To
analyze the stochastic program, a simulation model of the strategic airlift system is also
developed. This simulation model allows the user to analyze the deterministic and
stochastic models and to compare solutions. The stochastic model, in addition to the
features of Throughput I1, accomplishes the following: (1) selection of aircraft routes by
anticipating potential bottlenecks in the system, (2) prevents unreliable aircraft from using
capacity limited airfields and (3) a flow of cargo from origin to destination that is not

interrupted by the random events of aircraft reliability.




vi




TABLE OF CONTENTS
- L. STOCHASTIC MODELING FOR AIRLIFT MOBILITY ....coeoiiiiiiiiiiceecieee 1
A BACKGROUND ..ottt ettt 2
1. Mobility Optimization Model................ccccooveiiiecieiieecee e, 3
2. Throughput Model ... 4
B. THROUGHPUT IL.....ccooiiiiiiiiiiiiiieceicee et 4
C. PROBLEM STATEMENT ..ottt 6
D. METHODOLOGY ..ottt 6
II. DETERMINISTIC MODEL AND AIRCRAFT RELIABILITY .....ccccooviviiincienne 9 |
A. MAXIMUM ON GROUND (MOG) OR AIRFIELD CAPACITY .......cccccvenee. 9
B. THROUGHPUT IL....cocoiiiiiiiiiiciieiee ettt e 13
i. MOAE] FELUTES.........coooeveeee oo ese oo eeee e eeeeeese e 13
2. ASSUIMPLIONS......coviiiiiiiiieieiieiee ettt eie et ebeete e esaesre e ensesssesnenseens 14
3. LIMIEATIONS ...t 15
C. AIRCRAFT RELIABILITY ...c.oiiiiiiiiiicinineeeie et 16
Lo DAtA ..o 16
2. Scenario Development..............ccoooiiiiiiiiiiccc e, 19
D. EFFECT OF AIRCRAFT RELIABILITY ON AIRLIFT OPERATIONS........22
I1I. STOCHASTIC OPTIMIZATION MODEL ......c.ccooiiiiiiiiiiiiiie e, 25
A. STOCHASTIC PROGRAMMING ........ooiiiiiiiiieeeee s 25
vii




1. Simple Recourse Models ..................c.cocovoierieeoeeeeoeeeeeeee, 27

2. Recoufse MOGEIS.......oocooiiiiie e, 27
B.MODEL ... 29
1 Additional Data............ocooiiiininiiiereee e 30

2. Additional Decision Variable ...............c....o.cccoooiioiiiiieeeeeen. 30

3. Additional Objective Function Term ................ccoooeoemoeeeeeeeeeeeee. 30

4. Modification to Throughput IT Constraints....................cococovevvceenn... 32

5. Additional ConStraints ..............cocoueviueveieiccieeeeeeeee e, 33

C. AN EQUIVALENT REPRESENTATION OF THE MODEL...........cccco........ 34
D. CALCULATION OF PENALTY ..ottt 36
E. SUMMARY OF UNDERLYING CONSTRUCTS..........cc.cccooveuimrrrinrinirnenn. 38
F. MODEL FEATURES .........cciiiiieoeeeeeeeeee e 39
IV. BENDERS DECOMPOSITION ... oo 41
A INTRODUCTION. ..ottt 41
B. THEORY ..ot 42
C. ALGORITHM ...ttt 46
L INitialiZation .........c.ocoiiiiiiiiiceeeee e 48

2. Master Problem...........c.ocooioiiiieiicceeee e 48

3. Subproblem................... e 49

4. Optimality CheCK.........ocoiiiiiiic e 49

5. Addition Of CutS...........oooiiiiiiii e, 49

viil




LInput Data.........cccooiiiiiiii e 63

2. Queuing System for MOG Consumption...............ccccoevveeveriiniieruenneenenns 63

3. State Variables. .................................................. ettt 68

4. BVENES ..ottt 70

5. Execution OPHONS. ... 72
D.PERFORMANC E ... 73
VL ANALYSIS .ttt e aeeae st semseesennene e 75
A. COUPLING OF THE OPTIMIZATION MODELS WITH SIMULATION .....75
1. Converting the Continuous Decision Variable Solution to Integers......75

2. AITIVal Of OTAETS.......oiieiiiiiiiiccee e 78

B. DETERMINISTIC MOG EFFICIENCY FACTOR .......cccooviiiiiiieiiee e 80
1. MethodOIOZY . ..o 81

2 R ESUILS . ..o e 84




C. ANALYSIS OF DETERMINISTIC OPTIMIZATION MODEL...................... 84

D. DETERMINISTIC AND STOCHASTIC OPTIMIZATION COMPARISON .89

VIL. CONCLUSIONS AND RECOMMENDATIONS..........ooouiiimmioeeeeeeoeeeeee . 97
A CONCLUSIONS ...t 97

B. RECOMMENDATIONS.........ocooiiiiimiieeeeeeeeeeeeeeeee e, 97

1. MOG Efficiency Factor...............c.cccooviveiiviieieeeeeeeeeeeeeeeeeeeeeeeeeeeee o, 98

2. Modification to Deterministic Optimization Model.............................. 98

3. Stochastic Optimization Model .................cocoocoemoeeeeeeeeee, 98

APPENDIX A. THROUGHPUT IIMODEL..........cocoooovoimiiiiieeeeeeeceeeeeeeeeeeeeeeea. 99
AVINDICES ... 99
BUINDEX SETS ...t 99

1. AIrfield IndeX Sets...........ooouiueriimiieiceeeeeeeeeeeeeeeeeeeeeeeeee e 99

2. AITCTAft INAEX SELS ..o 99

3. Route Index Sets...........coorieiieuiiieeeecceeeeeeeeeeeeeeeeeee e 100

4. TIme INdeX Set........ccoiiiiiiiiiiiececee e, 100

C. GIVEN DATA ................................................................................................. 100

1. Movement Requirements Data ......................c.ocooooeoooioieeieeeee 100

2.Penalty Data..... ..o 101

3.Cargo Data ..., 101

4. Arcraft Data ..o 101

5. AITIEld Data ..o 102




6. Aircraft Route Performance Data ............oeveeeeiieeieieemreinnnneens 102

D. DECISION VARIABLES .......c.ooiiiiiiiiicincrcc et 102

1. Sortie Variables.............ocooveiiiniiiiicciccre e 102

2. Aircraft Allocation and De-allocation Variables...................cccoo. 103

3. Aircraft Inventory Variables ... 103

4. Airlift Quantity Variables ...............occoceoininiiiiiicccs 103

5. Elastic (Nondelivery) Variables...........coocooeoiinimiinciiiiiniciene 103

E. OBJECTIVE .......cooiitiiiiiieieei ettt 104

F. CONSTRAINTS ..ot 104
APPENDIX B. AIRCRAFT BREAK AND FIX RATESFOR 1994...........cccoeiinns 109
APPENDIX C. BENDERS DECOMPOSITION CALCULATIONS.......ccocoeiiiicie 113
APPENDIX D. SIMULATION EVENT DIAGRAMS ........cooiiiiiciccrecee 117
APPENDIX E.'MOG EFFICIENCY FACTOR - LANDINGS .......c.cccooiiiiiiiicirceeene 129
APPENDIX F. MOG EFFICIENCY FACTOR - STONS.....ccocooiiinrcncciccnicee 133
LIST OF REFERENCES ...t st 137
INITIAL DISTR[BUTICN LIST e s 139

Xi




X11




ACKNOWLEDGEMENTS

Many thanks to the following individuals whose untiring support and

contributions have made this research effort an educational and rewarding experience.

Professor David Morton for introducing me to this thesis topic and making this a
rich and eventful time. From day one he guided me in the right direction in
learning about stochastic optimization and how to solve “real world” problems.
His stochastic optimization and modeling expertise provided the necessary
background to model the airlift system.

Professor Richard Rosenthal for introducing this research project to me. His
guidance and insight on this thesis research are much appreciated.

MAJ Steve Baker for his “reality checks” of the model.
LTIJG Yasin Turker for his constructive criticism and feedback.

MAJ Kevin Smith and CPT David Horton of the Studies and Analyses Agency for
their hospitality and guidance durmg the six weeks I spent at the agency during
my experience tour.

Xiii




X1V




EXECUTIVE SUMMARY

The magnitude of the airlift effort during Desert Shield/Storm was
unprecedented. At the height of the war during Fall 1990, the Air Force averaged 17
million ston-miles per day of cargo and troops and by 10 March 1991, strategic airlift had
moved more than 500,000 people and 540,000 stons of cargo (Gulf War Air Power
Survey, 1993, p. 3). If the United States was to experience a future Operation Desert
Shield/Storm type scenario, massive amounts of equipment and large numbers of
personnel would have to be transported over continents and oceans, with an impending
deadline. The magnitude of such a deployment imposes great strains on current and
future air, land and sea mobility systems.

After the Gulf War in 1991, Cong‘ress. commissioned a Mobility Requirements
Study (MRS) .of the United States Armed Forces. The MRS studied all aspects of
mobility (domestic transportation, inter-theater lift, intra-theater lift and prepositioning)
to determine the proper mix of sea, air, and amphibious lift, surface transportation and
prepositioning. The goal was to provide Congress with an integrated planvfor procuring
the necessary lift for power projection in the 21st century. Two linear programming (LP)
optimizations models were developed as part of the MRS. They are the Mobility
Optimization Model (MOM) developed by the Joint Staff’s Force Structure, Resource
and Assessment Directorate (J8) (Wing er al., 1991) and the Throughput model

developed by the USAF/SAA (Yost, 1994).
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In 1994 the Naval Postgraduate School conducted research in response to a
request from the U.S. Air Force Studies and Analyses Agency (USAF/SAA) and
culminated with the development of Throughput II, a model described in a 1994 NPS
M.S. thesis by Capt. Lim Teo Weng (Lim, 1994) and enhanced the following year
(Morton, et al., 1995). Throughput 1I is a strategic airlift assets optimization problem
formulated as a multi-period, multi-commodity flow model with a large number of side
constraints. It is implemented in the General Algebraic Modeling System (GAMS)
(Brooke et al., 1992), and its purpose is to minimize late and non-deliveries subject to
physical and policy constraints, such as aircraft utilization limitations and airfield
handling capacities.

Throughput II and other existing strategic airlift optimization models typically
assume all data is known prior to making a decision. However, assuming that all data is
known with ceﬁainty is not always realistic. Specifically, existing optimization models
fail to properly address aircraft reliability, which is an inherently random aspect of a
strategic airlift system. Grounded aircraft that require repair work can significantly
degrade the performance of an airlift system. Failing to properly model aircraft
reliability may result in models that are too optimistic with respect to throughput
capability. Another limitation is these optimization models may schedule unreliable
aircraft through capacity limited airfields or airfields that have limited repair capabili‘ty.

Techniques from stochastic programming are used to develop a model that

incorporates aircraft reliability. Data is available for aircraft breakdown and repair rates, thus
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allowing the development of empirical probability distributions. As a result, aircraft

reliability can be modeled‘ as a random variable with a known distribution. With this data, a
stochastic extension is added to the Throughput IT model resulting in a two-stage stochastic
linear program with recourse. The stochastic model, in addition to the features of
Throughput II, accomplishes the following:

o Selection of aircraft routes by anticipating potential bottlenecks in the system.

e Minimizes the number of unreliable aircraft using capacity limited airfields or
airfields that have limited repair capability.

e Achieve a flow of cargo to the theater that is not interrupted by the random events
of aircraft reliability.

However, there is a price to be paid with respect to model size for incorporating
aircraft reliability. Due to the large number of scenarios involved, this linear program is
large in scale and beyond the capability of modeling languages like GAMS. To overcome
this challenge, ;1 special purpose algoﬁthm designed for stochastic optimization models is
utilized, specifically Benders decomposition.

To objectively analyze the deployment schedule recommended by the stochastic
program, a detailed discrete-event simulation model of the strategic airlift system is also
developed. The simulation model attempts to execute deployment schedules and allows
the user to analyze the realism of the recommended schedule. Specifically, the
simulation model is used to execute the deployment schedule from an optimization
solution and allows the user both to analyze the deterministic and stochastic models and

also to compare their proposed deployment schedules.
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I STOCHASTIC MODELING FOR AIRLIFT MOBILITY

Strategic airlift is a critical factor in military operations. The demand to
distribute personnel, supplies, and equipment to combat areas can be immediate and of
‘immense proportions. To project power across the world, strategic airlift, along with
sealift, must transport the necessary units and equipment and also sustain those units.
During Operation Desert Shield strategic airlift delivered 15 percent of the approximately
3.5 million stons of dry cargo (Gulf War Air Power Survey, 1993, p. 6), and between 7
August 1990 and 10 March 1991, airlift delivered approximately 23 percent of all cargo
(Gulf War Air Power Survey, 1993, p. 112).

This thesis examines the major issue of airlift mobility and is a continuation of
optimization modeling research conducted at the Naval Postgraduate School in 1994. In
that year research was performed in response to a request from the U.S. Air Force Studies
and Analyses Agency (USAF/SAA) and culminated with the development of Throughput
11, a model described in a 1994 NPS M.S. thesis by Capt. Lim Teo Weng (Lim, 1994) and
enhanced the folldwing year (Morton, ef al., 1995). This thesis describes a stochastic
extension to Throughput II to account for aircraft reliability. A detailed discrete-event
simulation model of the strategic airlift system is also developed so that this stochastic
system may be more closely analyzed. This simulation model attempts to execute

deployment schedules and allows the user to analyze the deterministic and stochastic

models and to compare various deployment schedules.




A. BACKGROUND

The magnitude of the airlift effort during Desert Shield/Storm was
unprecedented. At the height of the war during Fall 1990, the Air Force averaged 17
million ston-miles per day of cargo and troops and by 10 March 1991, strategic airlift had
moved more than 500,000 people and 540,000 stons of cargo (Gulf War Air Power
Survey, 1993, p. 3). If the United States was to experience a future Operation Desert
Shield/Storm type scenario, massive amounts of | equipment and large numbers of
personnel would have to be transported over continents and oceans, with an impending
deadline. The magnitude of such a deployment imposes great strains on current and

future air, land and sea mobility systems.

Despite the strategic success of Operation Desert Storm/Shield, the airlift
operation experienced execution planning problems and a shortfall in airlift capability.

Examples of each are as follows:

e Execution. Computer models could not analyze the airlift schedule and
determine where the flow exceeded the throughput capacity of the airfield
structure. Consequently, too many aircraft were passing through some parts
of the system at one time, and airfields became backlogged. As a result the
Air Force had to halt the flow on several occasions. (Gulf War Air Power

Survey, 1993, p. 91)

e Shortfall. The Air Force relied heavily on the civil airline industry to fulfill its
airlift requirements. Furthermore, without the thousands of missions flown by
civilian air carriers, the Air Force could not have moved the required troops
and cargo to the Arabian Peninsula by the time the United Nations deadline
expired on 15 January 1991. (Gulf War Air Power Survey, 1993, p. 3)




The U.S. military services are currently working to improve the airlift system, and as a
result, various optimization and simulation models have been developed. These
analytical tools have been used to help improve the effectiveness of limited lift assets in
order to minimize delivery shortfalls.

After the Gulf War in 1991, Congress commissioned a Mobility Requirements
Study (MRS) of the United States Armed Forces. The MRS studied all aspects of
mobility (domestic transportation, inter-theater lift, intra-theater lift and prepositioning)
to determine the proper mix of sea, air, and amphibious lift, surface transportation and
prepositioning. ' The goal was to provide Congress with an integrated plan for procuring
the necessary lift for power projection in the 21st century. Two linear programming (LP)
optimizations models were developed as part of the MRS. They are the Mobility
Optimization Model (MOM) developed by the Joint Staff’s Force Structure, Resource
and Assessment Directorate (J8) (Wing et al, 1991) and the Throughput model

developed by the USAF/SAA (Yost, 1994).
1. Mobility Optimization Model

MOM is a multi-period, multi-cbmmodity model with a single source in the
United States and a single destination in the theater of concern. This model considers
both air and sea mobility and is used in determining the proper level and mix of lift assets
(air, sea and prepositioning) necessary to support U.S. power projection needs. Although
MOM serves its purpose well by modeling the spectrum of strategic lift, it is not suitable

for answering the detailed air mobility questions currently sought by USAF/SAA. In




short, it does not model the airlift infrastructure network and constraints in sufficient
detail; e.g., the maximum number of planes on the ground (MOG) constraint at airfields

is not directly modeled.
2. Throughput Model

The Throughput model is a single-period, multi-commodity model which
incorporates the strategic airlift network. This static airlift mobility model was
developed by USAF/SAA to determine which part of the airlift system is restricting flow.
It has also been used to evaluate alternative military strategic airlift fleets, route
structures and basing schemes for different scenarios. Although the Throughput model
has proven useful for USAF/SAA, it has inherent limitations due to its static nature
(single period). For example, important constraints such as delivery time windows
cannot be modeled when the time domain is not incorporated into the model. In
addition, the model is unable to provide answers to key questions that concern decision-
makers such as, on what day will Unit X commence movement and on what day will it

be closed?
B. THROUGHPUT |l

Throughput 1II is a strategic airlift assets optimization problem formulated as a
multi-period, multi-commodity flow model with a large number of side constraints. It
combines the time period aspect of MOM with the infrastructure network of Throughput.

It is implemented in the General Algebraic Modeling System (GAMS) (Brooke ef al.,




1992), and its purpose is to minimize late and non-deliveries subject to physical and

policy constraints, such as aircraft utilization limitations and airfield handling capacities.
For a given fleet and infrastructure, the model can provide insight when answering many
mobility questions, such as: 1) Are the aircraft and airfield assets adequate for the
deployment scenario? 2) What are the impacts of shortfalls in airlift capability? 3) Where
are the system bottlenecks and when will they become noticeable? These types of
analyses can be useful when selecting airlift assets and investing or divesting in airfield
infrastructure. (Morton et al., 1995)

In the Air Force analysis community, simulation modeling is currently used more
widely than optimization. Simulation models more readily accommodate uncertainty and
handle higher levels of detail, such as tracking individual airplanes and flight crews. For
example, the Air Mobility Command’s (AMC) Mobility Analysis Support System
(MASS), a simulation model, is a discrete-event global airlift simulation of military and
commercial airlift assets used in strategic and theater operations. MASS is the current
standard for all airlift studies and in recent years, no critical airlift analysis has been
performed without comparing the results with output from MASS. Yet even MASS has
disadvantages; it can only answer “what-if” questions, not “what’s best” questions; e.g.,
are there enough airlift assets for this scenario vs. which aircraft are the most efficient
and versatile? Furthermore, the simulation program expends more manpower time and
computer resources than optimization models. For instance, it requires two weeks to

setup, run and analyze results for a typical MASS scenario.




C. PROBLEM STATEMENT

Throughput II and other existing strategic airlift optimization models typically
assume all data is known prior to making a decision. However, assuming that all data is
known with certainty is ndt always realistic. Specifically, existing optimization models
fail to properly address aircraft reliability, which is an inherently random aspect of a
strategic airlift system.! Grounded aircraft that require repair work can significantly
degrade the performance of an airlift system. Failing to properly model aircraft
reliability may result in models that are too optimistic with respect to throughput
capability. Another limitation is these optimization models may schedule unreliable

aircraft through capacity limited airfields or airfields that have limited repair capability.

D. METHODOLOGY

Techniques from stochastic programming are used to develop a model that
incorporates aircraft reliability. Data is available for aircraft breakdown and repair rates, thus
allowing the development of empirical probability distributions. As a result, aircraft
reliability can be modeled as a random variable with a known distribution.

The stochastic optimization model is based on two-stage stochastic linear
programming with recourse. The decision making process and uncertain events unfold in the
following manner. First, an aircraft schedule is devised. Then, based on this schedule, the

model examines all possible scenarios involving aircraft repair time realizations and the

'While MASS has the capability of running with specified probability distributions for ground time, it is
rarely run in this mode due to computational requirements (Waisanen, 1994).




relation of these repair times to the available airfield capacities. If, for a specific scenario
and time period the available capacity at an airfield is exceeded, a penalty in proportion to
the excess will be incurred. The penalty function will discourage deployment schedules that
frequently (as measured by the probability distribution) result in airfield capacity violations.
This will produce an optimal solution that maximizes the expected value of system
throughput—a flow of cargo from origin to destination that is not interrupted by the random
events of aircraft reliability. This approach represents the logic of an experienced scheduler
in that, relative to a deterministic model, the stochastic model is encouraged to:
e Select aircraft routes by anticipating potential bottlenecks in the system.

e Prevent unreliable aircraft from using capacity limited airfields or airfields that
have limited repair capability.

o Achieve a flow of cargo to the theater that is not interrupted by the random events
of aircraft reliability.

Howevér, there is a price to be paid with respect to model size for incorporating
aircraft reliability. Due to the large number of scenarios involved, this linear program is
large in scale and beyond the capability of modeling languages like GAMS. To overcome
this challenge, a special purpose algorithm designed for stochastic optimization models is
utilized, specifically Benders decomposition.

To objectively analyze the deployment schedule recommended by the stochastic
program, a detailed discrete-event simulation model of the strategic airlift system is also
developed. The simulation model attempts to execute deployment schedules and allows

the user to analyze the recommended schedule. Specifically, the simulation model is




used to execute the deployment schedule from an optimization solution and allows the
user both to analyze the.realism of the deterministic and stochastic models and also to
compare their proposed deployment schedules. Also, examining the results of an
optimization model via a simulation model can provide useful feedback with respect to the
validity of various linear programming modeling assumptions.

In Chapter 11, the features, assumptions and limitations of the Throughput II model
are discussed. The details of the mathematical formulation can be found in Appendix A.
Also in Chapter I the issue of Maximum on Ground (MOG) and the impact of aircraft
reliability on MOG is discussed. This is followed by the stochastic extension to Throughput
II in Chapter Ill. The Benders decomposition algorithm used to solve the large stochastic
model is described in Chapter IV. The simulation model used to compare the stochastic and
deterministic models is developed in Chapter V and the analytical results and insight derived

from this compérison are contained in Chapter VL




IIl. DETERMINISTIC MODEL AND AIRCRAFT RELIABILITY

MOG (Maximum on Ground) is used extensively in the strategic airlift system
and has a dramatic impact on throughput capability. Therefore, any detailéd model of
the airlift system must incorporate MOG. An explanation of MOG and why it is
important is contained in Section A. Then in Section B, this thesis examines the model
features and assumptions of an existing deterministic optimization model, Throughput II.
As stated earlier, this deterministic model assumes perfectly reliable aircraft and
deterministic ground times. But these assumptions err on the side of optimism. This
shortcoming is also discussed in Section B. To examine the issue of aircraft reliability,
Section C discusses the available reliability data and its impact on strategic

airlift operations.
A. MAXIMUM ON GROUND (MOG) OR AIRFIELD CAPACITY

A key factor in any strategic airlift model is MOG. By definition MOG is “the
highest number of aircraft being used in an operation which will be allowed on the
ground during a given span of time based on simultaneous support.” The key phrase in
this definition i§ “simultaneous support;” an airfield’s MOG value is the maximum
number of aircraft that can be serviced at the same time when the airfield is equipped
with specified service facilities. The MOG value for an airfield depends on a number of

factors including parking spaces available (also called ramp space), material handling




equipment, maintenance capabilities, fuel availability, as well as the type of service
required (onload, refuel, or offload). Comparative scenarios are as follows:

e Scenario A: Airfield Bravo is being used as an enroute base. In this role the
limiting factor for airfield Bravo is the number of fuel pumps available.
Assuming the airfield can only refuel eight aircraft simultaneously, a MOG of
eight is established.

e Scenario B: Airfield Bravo is an onload base. In this case the airfield may be
limited by its ability to onload equipment due to a limited number of forklifts
and/or cranes.  Assuming the airfield can only load two aircraft
simultaneously, this results in a MOG of two. Thus scenario B is more
limiting than the fuel pump scenario of A.

As noted above MOG is not static; depending on the scenario and its limiting factors,
MOG, for example, can range from a value of eight to a value of two.

A further variable related to MOG is ramp space. This is the maximum number
of aircraft that the airfield can park at any given time. Thus for any airfield, its MOG
value will be less than or equal to its ramp space. In an airlift operation, one might be
inclined to send more planes above the MOG value because the large ramp space
available at an airfield is believed to allow a larger flow of cargo to the theater. The
following quote illustrates why MOG is important (versus ramp space) and why we
should schedule in such a way to not violate MOG.

“As more and more aircraft enter a MOG constrained system, it becomes

progressively more difficult to serve these arriving aircraft in a scheduled

ground time. The coordination of limited fueling, maintenance, loading

and manpower assets to maximize throughput depends upon a limited

number of aircraft per day. Adding aircraft can magnify the delays

experienced for all users and throughput to a theater can and does
decrease as the number of aircraft increases. Somalia is a good example.

Early attempts to maximize flow rates into the country resulted in holding,
diverts, malpositioned cargo, and rescheduled missions. All because too
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many aircraft were trying too operate in too constrained an environment.

Ramp space is just the beginning. In Desert Shield, more aircraft should

certainly deliver more to a huge ramp like the one at Dhahran: but what

happened? Airlift aircraft waited behind commercial freighters, fighters,
bombers, and other multinational forces waiting for limited supplies of

fuel. Ground times increased to the point that we held missions in Europe

for scheduled slot times down range. Slot times were not the result of

inadequate ramp space, but were a solution to lengthy ground times

waiting for fuel. These delays extended crew days beyond legal limits. It

was not an effective strategy to send in a maximum flow. We achieved

maximum throughput when scheduled slot times reduced the number of

aircraft arriving per day.” (Merril and Szabo, 1994, p. 4)

This quote indicates that the limiting factor in Dhahran for throughput capability is not
ramp space but is fuel capacity (available to airlift aircraft), which defines its
MOG value.

As stated earlier MOG is the maximum aircraft on the ground an airfield can
service simultaneously. But in airlift operations and in the modeling world, it is
convenient at times to apply a transformation to the definition of MOG; MOG can be
transformed to the maximum flow rate of inbound aircraft an airfield can sustain. For
instance, if an airfield has a MOG value of two (assuming one hour ground times), this
airfield can support aircraft arriving every 30 minutes. In military airlift operations, this
transformation of MOG enables personnel in the Air Force to make better scheduling
decisions. This transformation is also necessary for models with discrete time periods—in
particular the mathematical optimization models discussed and developed in this thesis.

Using the transformation of MOG, is it realistic to have aircraft arrive at this
maximum flow? This question highlights two separate issues.

1. Airlift operations. The current planning factors require an aircraft be serviced

in an allotted amount of time for refueling, offloading or onloading. But what

3




happens when an aircraft breaks down? To remedy the situation, additional
manpower or equipment resources will be required. But from where? Since
the airfield has no additional resources readily available, the only solution is
to divert resources from other aircraft being serviced, thus multiplying the
problem situation and decreasing capacity even further. And as more aircraft
arrive, significant delays can develop while the base is operating beyond its
current capacity.

2. Modeling. In building a mathematical model with discrete time steps, MOG
is transformed from a physical capacity (i.e., 2 plane slots) into a unit that
involves time (i.e., 48 plane slots per time period; assuming a 24 hour time
period and one hour ground times). From the perspective of the model, it is
perfectly acceptable to have all aircraft (i.e., 48 aircraft) arrive at one time.
However, to fully utilize this capacity in reality, the model must produce a
perfect back-to-back schedule (i.e., aircraft must arrive every 30 minutes). If
aircraft arrivals are not uniformly spaced, even if aircraft do not break down,
the model cannot achieve this capacity in reality, even though the model
thinks it can.

To remedy this potential problem, one should lower the arrival rate or flow of
aircraft to this airfield from the maximum. This will result in 1) more manpower and
equipment imrﬁediately available for broken aircraft and 2) minimize the possible
violation of MOG in the optimization model due to discrete time periods. This will
allow aircraft to land and immediately be serviced, thus achieving a realistic flow of
cargo from origin to destination. This thesis will determine, by modeling one major
aspect of ground time, namely aircraft reliability, the proper rate of flow of aircraft from

origin to destination. This flow rate can then be transformed to determine at what

percentage of MOG an airfield should operate.
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B. THROUGHPUT I

The original Throughput 11 model was developed by Capt. Lim Teo Weng (Lim,
1994). Since then the model has been enhanced in ongoing research at the Naval

Postgraduate School (Morton, et al., 1995). A brief overview of the mathematical

formulation of Throughput 11 is in Appendix‘ A.
1. Model Features

The Throughput I model is a multi-period model for determining the maximum
on-time throughput of cargo and passengers that can be transported with a given fleet
over a given hetwork, subject to appropriate physical and policy constraints. The
objective function minimizes the total weighted penalties for late deliveries and non-
deliveries. This model considers only inter-theater, not intra-theater deliveries. The
major features -of the airlift system currently captured by the model include (Morton, et
al, 1995):

e Multiple origins and destinations. The model flies aircraft through multiple

origin, enroute and destination airfields. Due to the size of the airlift system,

aggregation of origin and destination airfields is done to allow tractability of
the model. ’

e Flexible routing structure. The air route structure supported by the model
includes delivery and recovery routes with a variable number of enroute stops
(usually between zero and three). This will give the model the option of
short-range flights with heavier loads or long-range flights with lighter loads.
For further routing flexibility, the model also allows the same aircraft to fly
different delivery and recovery routes on the same mission.

e Aircraft-to-route restrictions.  The user may impose aircraft-to-route
restrictions; e.g., military aircraft may only use military airfields for enroute
stops. This particular provision arises because the USAF AMC may call upon




civilian commercial airliners to augment USAF aircraft in a deployment,
under the Civil Reserve Airfleet (CRAF) program. The model distinguishes
between USAF and CRAF aircraft.

Aircraft assets can be added over time. This adds realism to the model,
because CRAF and other aircraft may take time to mobilize and are typically
unavailable at the start of a deployment.

Delivery time windows. In a deployment, a unit is ready to move on its
available-to-load-date (ALD) and has to arrive in the theater by its required-
delivery-date (RDD). This aspect of the problem has been incorporated in the
model through time windows that are specified for each unit. The model
treats the time window as “elastic” in that the cargo may be delivered late,

subject to a penalty.

Assumptions

The assumptions used in the model are as follows (Morton, ef al., 1995):

Congestion.  Inventoried aircraft at origin and destination airfields are
considered not to affect the aircraft handling capacity of the airfield. This
assumption is not strictly valid since an inventoried aircraft may interfere with
the ability of the airfield to process aircraft in the airlift operation.

Deterministic ground time. Aircraft turnaround times for onloading and
offloading cargo and enroute refueling are assumed to be known constants,
although they are naturally stochastic. This ignores the fact that deviations
from the given service time can cause congestion on the ground. To offset the
optimism of this assumption, Throughput II uses an efficiency factor (<1) in
the formulation of MOG consumption constraints to lessen the impact
of randomness.

Computational tractability. The model aggregates onload and offload
airfields, and uses continuous decision variables and discrete time periods—
typically one day.
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3.

Limitations

Throughput II errs on the side of optimism with respect to throughput capability

due to the assumption of deterministic ground times and perfectly reliable aircraft. Also

the single-day time periods can decrease the model’s fidelity. This results in the

following potential problems that will be examined in this thesis:

Deterministic ground times for aircraft. The model, if needed, will
continually saturate airfield capacities to achieve the maximum flow of cargo
from origin to destination. However, the aircraft ground times used in the
calculation of MOG consumption represent the expected times for
onload/refuel/offload, resulting in optimistic throughput capability (via
Jensen’s inequality). In an attempt to overcome this optimism, the
deterministic model uses a MOG efficiency factor to lessen the impact of
random ground times.

Perfectly reliable aircraft. Broken aircraft can have an immediate impact on
throughput capability, especially when airfield capacity resources are limited.
Moreover, the necessary repair work consumes resources that might be
needed elsewhere. The location of the broken aircraft is also critical. If an
aircraft breaks enroute, not only does the necessary repair work consume
resources at the enroute airfield, the cargo onboard the aircraft will be delayed
in arriving at its destination. If the aircraft breaks at an airfield with limited
maintenance capability, the required maintenance facilities and assets might
not be readily available, resulting in even longer delays.

Time resolution. With one-day time periods, the model can route aircraft in a
manner that causes local congestion. For example, all aircraft could arrive at
an airfield within a small time window instead of being dispersed over an
entire day. In reality this would cause local congestion, even though the
model’s representation of aircraft handling capacity is observed. Another
limitation is that the model rounds the time (to the nearest day) at which an
aircraft arrives at origin and destination airfields.
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C. AIRCRAFT RELIABILITY

There are many factors that contribute to the stochastic nature of ground times for
aircraft.  Some of these factors include local congestion at an airfield, lack of
maintenance personnel or spare parts, airlift users, aircraft reliability, and weather.

Aircraft reliability accounts for a significant portion of random ground times.

1. Data

The Air Mobility Command (AMC) collects aircraft breakdown and repair rates
for each of the strategic military aircraft, which are defined as follows (AMC Pamphlet
21-2,p. 17):

e Break: system malfunction that renders aircraft non-mission capable (NMC)
after landing.

e Break rate: percent of aircraft landings that have system malfunctions
rendering aircraft NMC.

e Break rate formula:

number of breéks 100 .' (2.1)
number of landings

e Fix: completing maintenance actions on NMC aircraft rendering the aircraft
airworthy (PMC, partially mission capable, or FMC, fully mission capable).

e Fix rate: percent of aircraft landing NMC that are fixed within established
time frames ( 0-4, 4-8, 8-12, 12-16, 16-24, 24-48, 48-72, >72 hours). '

e Fix rate formula;
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(number of aircraft fixed within a specified time frame )* 100 2.2)

number of aircraft landing breaks

Appendix B contains data in this form from 1994 for the C5, C17 and C141.
Based on this data, an empirical probability mass function, p,(¢), for each aircraft type a
is developed. Each possible realization of the random variable 7,, representing the
required repair time, will have an associated probability, P(7, = ¢) = p,(t). This
probability mass function applies each time a plane lands to determine the required repair
time, 7,. This assumes that the probability mass function does not depend on the hours
flown by the aircraft (This assumption is not entirely correct, since aircraft reliability
typically decreases with increasing flying hours.). With this assumption, the probability

mass functions are derived resulting in nine realizations per aircraft (Table II-1).

Rep(ahI: s1)'lme pes(t) pci7(t) pcat(t)
0 0.86540 0.93110 0.85110
2 0.03078 0.02733 0.06051
6 0.02933 0.00832 0.03379
10 0.01643 0.00238 0.02116
14 0.01582 0.00238 0.01205
20 0.01269 0.00832 0.00910
36 0.01872 0.01069 0.00713
60 0.00396 0.00712 0.00213
72 0.00686 0.00237 0.00304

Table II-1: Probability Mass Function, p,(?).

17




In review, we have the following notation:

e T,-random variable representing the repair time of an aircraft of type a.
® p/?) - the probability mass function for 7,

* S, - support of the random variable 7,, where S, = {0, 2, 6, 10, 14, 20, 36, 60,
72}.

To consider aircraft reliability, a model can be formulated that tracks each
individual aircfaft. By using binary variables, the model can determine if that specific
aircraft breaks when it lands at airfield 5 in time period ¢, thus the binary variable will
require three indices (aircraft identification number, airfield and time period). But
because the model does not know a priori how to schedule the aircraft, the model does
not know which airfield the plane will land at on any given time period. Therefore the
model must consider every possible scenario that can occur. For a singe aircraft, the size

of the sample space (assuming nine realizations per aircraft) is

IQI — 9(10!&1 number of airfields)*(time periods) ) (23)

In extending this to all aircraft in the model, the size of the sample space (assuming 9

realizations for each aircraft) is

|Q| — 9(10!:11 number of arrcraft)*(total number of airfields)*(time periods) ) (24)
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To examine these scenarios in a mathematical program, the model will require a

constraint for each scenario (as a minimum), and a binary variable for each individual
aircraft (as an indicator variable) to determine if that particular plane lands at airfield b in
time period ¢. Thus the size of the model is proportional to the size of the sample space.

Using the Throughput II data considered by Lim (1994), this results in a minimum of

416 ai . . . . .
IQI — 9( 16 aircraft)*(16 airfields)*(30 time periods) — 9199,680 (25)

constraints, in addition to the requirement for binary variables. A model involving this

minimum number of constraints is impossible to solve given today’s technology.

2. Scenario Development

To reduce the size of the sample space and the associated model, three steps are
enacted. First, the convolution is used. For instance, the convolution of p,(f) with

itself is

Par() =Y Pt = 1P, (¥). (2.6)

ves,

The convolution of p,(¢) with itself »n times is denoted p,(f): the probability mass

function of the total repair time random variable, 7, of n aircraft of type a. In the model
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we develop, the convolution procedure will be utilized to reduce the dimension of the

model. In review, we have the following additional notation:

® T4 - random variable formed by summing » independent and identically
distributed random variables, 7, each with probability mass function p,(¢).

®  pa(1) - the probability mass function for 7, with support S,,.

To reduce the number of scenarios even further, the second step approximates the

distribution of the random variable, 7, with another random variable, f‘m. This new
random variable consists of a smaller number of realizations. While 7. has fewer

realizations than 7, the probability mass function p_ (¢) still closely resembles that of

Parl?). This results in the following notation:

A

e 7, -random variable that approximates 7, but has fewer realizations.
e p..(1) - the probability mass function for f’an with support S',,,, .
The third step incorporates the random variable fa,, in the stochastic model

developed in this thesis. We define the random variable

>

RTime, = (2.7)

X |-

realizations of this random variable are denoted R7ime?. Multiplication of this random

variable by the number of landings of aircraft of type a gives the total repair time

required; this has the correct distribution if exactly » aircraft have landed. It will be

20




shown in Chapter III that the stochastic model developed examines separately the
possible scenarios for each base and time period, i.e., each (b,f) combination will have its
own random variable RTime,. Thus the correct notation is R7ime,,,. In review we have

the following notation:

e RTime,, - the repair time random variable for aircraft of type a at airfield b
and time period ¢.

e P, (1) - the probability mass function for RTime,, with support S
These three steps reduce the size of the sample space for each base and time

period combination, Q,,, to (assuming nine scenarios per aircraft type (n = 9) for p,,(¢))

Igb,| = 9(3 arcraft types) ) (28)

This results in a minimum of an additional

Q3 aircral ty"’°s)*(]6 airfields)* (30 time periods) = 349,920 (2.9)

constraints. The stochastic model developed in Chapter III will then require a minimum
of 349,920 constraints. The advantages and disadvantages of these three steps are

as follows:

Advantages:
¢ Reduces the number of scenarios or the size of the sample space.
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No need for integer programming. Since RTime,, approximates the repair
time variable for a single aircraft of type a, at airfield b, time period ¢,
multiplication of R7ime;, by a continuous variable gives the approximate
total repair time required in scenario ® (assuming the effects of using a
continuous decision variable are negligible).

A stochastic model using this sample space is too large to be solved using
modeling languages like GAMS, but it can be solved using decomposition
based algorithms.

Disadvantages:

Since the input to the stochastic model will be RT7ime,,, the realizations of

this random variable will be exact if the model sends exactly » planes of type
a to airfield b in time period 7. In this case, the only error is caused by using

A

T, in approximating 7, This error will get smaller as the number of

an

realizations per aircraft type used in developing f;,, approaches the number of

realizations of 7,

If the model sends more or less than » planes, the realizations of f,m 1S not
accurate since this was based on » planes. This error is in addition to the error

caused by using fm to approximate 7,,.

D. EFFECT OF AIRCRAFT RELIABILITY ON AIRLIFT OPERATIONS

In developing the stochastic model, two separate modeling issues were of

concern. First, a broken aircraft consumes a portion of ramp space and second, a broken

aircraft will have some type of impact on MOG. Consider the following points relating

to the issue of broken aircraft consuming ramp space:

In the literature ramp space is never mentioned as the limiting factor for
throughput capability. During the Gulf War, Rhein-Main had sixty-eight
aircraft on the ramp, even though the base had parking spaces for only fifty-
six aircraft (Gulf War Air Power Survey, 1993, p. 100).
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e Ramp space data is not currently available to support a stochastic model with
this model enhancement.

In light of these two points, this thesis does not attempt to model the impact of
broken aircraft on ramp space, i.e., the stochastic model does not have a ramp space
consumption constraint. On the other hand, consider the following points:

e A broken aircraft does consume ramp space, but the plane also requires
resources to complete repairs-resources that could be used for processing
planes in the delivery of cargo.

¢ In peacetime there is no urgent need to repair aircraft. But during a critical
airlift operation, a broken plane has an immediate impact when aircraft supply
is a limiting factor, the aircraft is carrying a critical load or the aircraft breaks
at an airfield with limited maintenance capability. In these cases additional

resources may be required to repair the plane.

e In an airlift operation the goal is to achieve the highest throughput capability
possible, but this is directly related to MOG and not ramp space.

Thus, the stochastic model must mathematically model the impact of aircraft reliability
on MOG. |

Using another transformation of MOG, this thesis will be referring to hours of
MOG consumed. For instance, if an airfield has a MOG of two, then this airfield has 48
hours of MOG available (24 hours per day * 2) per day. So when a plane does break,
how many hours of MOG does the plane actually consume? In addition to the resources
required for the onload/refuel/oftload, an additional amount of resources is required to
repair the aircraft. Converting repair times directly into MOG consumption is often too
pessimistic; instead only a fraction of the total repair time actually reduces capacity. lThe

longer the aircraft is on the ground the smaller that fraction. If the repair time random
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variable realization is two hours, for example, we assume that all repairs will consume
an additional two hours of MOG. On the other hand, if the repair time random variable

realization is 72 hours, we assume the following:

e If a plane breaks at a large enroute airfield with unlimited maintenance
personnel, an additional six hours of MOG are consumed. This assumes six
hours are required to offload and then in turn onload the cargo onto another
plane, while the original plane is repaired at the hangar.

o If the plane broke at an airfield with very limited maintenance personnel, the
plane will consume seventy-two hours of MOG.

Usting these ideas, the following is performed to produce data used in the stochastic
optimization model for each base and time period combination:

1. Obtain the probability mass function, p,(t), for the random variable 7, for
each aircraft of type a.

2. Modify the realizations of 7, to account for the amount of MOG hours
consumed. This can depend upon the airfield » and the time period 7.

3. Perform the convolution and approximation to obtain the random
variable 7.

4. Divide the realizations of 7. by n to obtain the random variable MRT. ime,, .
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lll. STOCHASTIC OPTIMIZATION MODEL

Due to the variety of stochastic optimization models discussed in the literature,
Section A gives a broad overview of stochastic programming terminology related to the
stochastic optimization model developed in this thesis. Then in Section B, the stochastic
extension to Throughput Mis déscribed, resulting in a two-stage stochastic linear program
with recourse. This will permit a study of how the optimal solution changes when going
from a deterministic model to a stochastic model that incorporates aircraft reliability
(Chapter VI). It is shown in Section C that this stochastic optimization model is very
large and must be solved using a decomposition based algorithm. The chapter then
concludes with a summary of the underlying. constructs used to develop the stochastic
model and the additional model features gained (in addition to those of the Throughput I

model) by using this stochastic extension.
A. STOCHASTIC PROGRAMMING

In deterministic linear programs (LP), all parameters are treated as known
constants. This can lead to an optimistic or pessimistic objective function value,
depending on which parameters are random. Moreover, in general it may lead to sub-
optimal decisions because they fail to hedge against the full range of possible scenarios.
On the other hand, stochastic programming models treat a subset of the parameters as

random variables with a known distribution. Even when the “exact” distribution of these
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random variables can not be obtained, the stochastic model will be an improvement over

the one-point forecast of the deterministic LP.

In the stochastic programming models presented here, realizations of random
parameters are denoted with superscript @, the corresponding sample space by Q, and the
probability mass function by p®. There are a number of options available in extending

the following linear program

minimize cx 3.1
subject to Ax2b

x>0

to the stochastic domain. One such option is to insist that a feasible decision be made no

matter what scenario might unfold:

minimize cx ' 3.2)
subject to A°x>2b° Vo eQ
x20.

Here we have assumed that the objective function coefficients, ¢, are known with
certainty. Many decision makers regard (3.2) as too pessimistic a formulation because it

is typically driven by the most “extreme” scenario. In most real-world systems, many of
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the structural constraints are elastic and may be violated at a certain cost. There are a
variety of stochastic programming models that differ primarily in how this issue of
“infeasibility” is handled. Those relating to the stochastic optimization model developed

in this thesis are described below (Morton, 1994).
1. Simple Recourse Models

In this type of model, infeasibility is accepted, but only at a certain cost; with
each constraint violation, there is an associated cost. Let g = (9,,9293, -.-.qm) denote the
unit cost of violating each constraint. The positive part of a scalar variable, s, is defined
as s* = max{s,0}; the positive-part-operator may be applied to a vector, componentwise.

With this definition, the simple recourse model is

minimize,o ox + E h(x, ) (3.3)

where h(x,0)=q(b® — A°x)",

where E, h(x,0) = Y p°h(x,0).

wel)
2. Recourse Models

In recourse models infeasibility is corrected, afterwards, at a certain cost. The

costs due to the amount of violation in the constraints are determined after the
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observation of the random data and are denoted as recourse costs; the expected value

criterion is used. In this case the model is written as

minimize cx+ F h(x,m) (34
x>0
where h(x,0) =  minimize f

subject to Wy2b” — A°x

As in the simple recourse case, £, h(x,®) is called the recourse function; W is called the

recourse matrix. The recourse variable, y, measures the corresponding violation in the
constraints, if any. If W = I, we have the simple recourse model.
The “standard” two-stage recourse model replaces the first stage constraints x > 0

with general structural inequalities and otherwise generalizes the problem as follows:

mirgr_r[}ize {ex + E h(x,0)} . 3.5

x20

The second-stage cost we will incur, if we observe scenario @ and act optimally given

first-stage decision x, is /(x,®) and may be expressed as
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h(x,0) = minimize [y (3.6)

subject to Wey=d®+B"x

y=0.

The recourse aspect of the model gives it a unique characteristic. The model is.
two-stage: ﬁrsf the decision variables are chosen, then the stochastic variables are
observed. These two steps will determine the recourse variables (to recover feasibility)
and their corresponding penalties. These penalties depend on both the constraint violated
and the magnitude of violation. The recourse cost has the effect of restraining
“aggressive” choices of decision variables if the costs involved with regaining feasibility
outweigh the benefits. Thus, the two-stage recourse model minimizes the sum of our

original first-stage costs and the expected recourse costs.
B. MODEL

As stated in Chapter II, the deterministic Throughput II model minimizes late and
undelivered cargo subject to system constraints. One set of these constraints, MOG
consumption (see Appendix A, constraint A.15), contain inherently random coefficients
because the ground times are of a random nature. This is where stochastic programming
can be used. If the pessimistic formulation (3.2) is used, it would be driven by the largest
conceivable ground time; that way we could ensure that we will never exceed MOG.

However, this is an extreme and unacceptable solution because the airlift system would
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be dramatically underutilized. Thus instead we will permit certain scenarios to violate
the MOG constraint, but add an objective function formulation that discourages the
model from generating schedules that yield frequent or large violations (3.6).

In this section we describe a stochastic extension to Throughput II to include
aircraft reliability. In the following pages, the first-stage variable x is a large vector that
includes all decision variables of Throughput II (i.e., X4 Yo, €tc.). The following is

added to the Throughput II model, resulting in a two-stage stochastic linear program model

with recourse.

1. Additional Data

MOGPEN,, This penalty is used in the objective function when airfield
(base) b, in time period ¢, exceeds MOG, referred as MOGCapy,
these correspond to the objective coefficients, £, in (3.6).

MRTime;,, The modified repair time random variable for aircraft type g, at
airfield b, at time period ¢, is denoted MRTime,, Realizations of
this random variable are denoted MRTime?, . These values

correspond to coefficients in the B” matrix in (3.6).

2. Additional Decision Variable

R, The amount by which MOGCapy, is exceeded at airfield 4 in time
period ¢ for scenario ; this variable corresponds to the y
variable in (3.6).

3. Additional Objective Function Term

The sample space for the vector of the modified repair times for all aircraft types

at airfield b at time period 7 is denoted Q,,={1, 2, ..., K;,}. From that sample space, each
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outcome ®(b,r)eQ,, has an associated probability pp® - This results in a recourse

function for each (b,) combination with the following notation

E ot (x,00,0) = Y ™" hy (x,0(b,1)), (37
o(b.1)eQ,,
where
h, (x,0(b,t)) = MOGPEN, * RY . (3.8)

In the following pages this thesis abbreviates ab,#) by o, resulting in the following

E hy,(x,0)= Y phy, (x,0). (3.9)

weQ,,

Using this notation, the following term is added to the original objective function of

Throughput 1I:

SN E by, (x,0)= 22 Y pis( MOGPEN, *R;}). (3.10)

t wef),,
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This will penalize the model whenever the MOGCap, at airfield b, in time period

1, scenario @ is exceeded. How the value of MMOGPEN,, is determined and its impact on

the model is discussed in Section D of this chapter.
4. Modification to Throughput IT Constraints

Throughput I uses the deterministic ground time for calculating the time required
for an aircraft to execute a route and for the amount of MOG consumed. For example, to
calculate the time a loaded aircraft will arrive ai the second enroute airfield, the model
sums the onload ground time, one enroute ground time and the required flight time.
Using the deterministic ground time is an optimistic assumption. Aircraft reliability,
only one aspect of the ground time variability, can cause delays in the delivery of cargo.
Since it is unreasonable (from a tractability perspective) to have aircraft actually “break”
in a linear program, the model needs to indirectly model this issue. This can be achieved,
in part, by using the expected value of the modified repair time, in addition to the
deterministic ground time, for the calculation of MOG consumption and the time for an
aircraft to execute a route. Even though the stochastic model uses the expected value of
the modified repair time in the MOG consumption constraint, the optimal solution is
- optimistic (via Jensen’s inequality). This optimistic solution is “modified” by the

addition of new constraints.
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Additional Constraints

In calculating the MOG consumption at airfield b in time period ¢, the Throughput

II model uses deterministic ground times (see Appendix A, constraint A.15). As stated

earlier, this will lead to an optimistic solution. To account for a portion of the random

ground times, aircraft reliability is incorporated into this constraint by using the random

variable MRTime,, The original constraints are maintained (for reasons to be discussed

in Chapter IV) and the following constraints are added:

Oy Z[MOG Req,,*(GTime,,, + MRTime;,)/24]* X, .

u a reR, t'el,,
1'+| DTime,, |=1

+> Y Y [MOGReq,*(GTime,, + MRTimeS,)/ 24]+Y,,

a reR, t'el .
1"+ DTime , =t

- R® < MOGCap, Y bto

(2) R2 20 v b1,

(3.11)

(3.12)

The stochastic model will examine each scenario @, at airfield b, time period ¢, and

determine if the MOGCap, has been exceeded. If it has, R;, will be the amount of

the violation.
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C. AN EQUIVALENT REPRESENTATION OF THE MODEL

The deterministic formulation of Throughput II is a linear program and hence can

be written in the following standard form:
minimize cx (3.13)

subject to Ax=b

x20.
The stochastic extension to Throughput II results in the following model:

minimize ex+ ) > E b, (x0) (3.14)
b 1

subject to Ax=b

x20,

where A, (x,0) = mir;jﬂr)nize MOGPEN,,* R},
bt

subject to
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OYYY Z[MOG Req,,*(GTime,,, + MRTime, )/ 24]* X,

u a reR, t'el,,
t'+[ DTime 5, |=t

+3Y,  X|MOGReq,*(GTime,, + MRTimeS, )/ 24}+Y,,
a r r'el,,
t'+| DTime,,, =t

- R;; < MOGCap,

(2) R2 20.

Upon close examination of the stochastic extension to Throughput II, the
additional constraints only examine the effect of the modified repair time random
variable at airfield b and time period ¢. Thus the sample space for all aircraft at airfield &

in time period 7, ,, has a size of (see Chapter II, Section C)

1Q,,| =90 or = 9% =729, (3.15)

resulting in an additional

729%(16 airfields)* (30 time periods) = 349,920 (3.16)

constraints. Combined with the Throughput II data considered by Lim (1994), we have a

total of
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(349,920 + 7,671) = 357,591 (3.17)

constraints. The stochastic model also has 362,166 decision variables. This results in a
very large model which cannot be solved using standard modeling languages like GAMS.
However, it has a special structure that can be exploited by decomposition based
algorithms, specifically Benders decomposition (Chapter IV). Using this algorithm, the
stochastic optimization model is solved under 20 minutes on a IBM RS6000 model 590
workstation (the deterministic model, using GAMS, solves under two minutes), obtaining

a near-optimal solution.

With the solution from the stochastic optimization model, this thesis examines the
impact of aircraft reliability on strategic airlift. Specifically, the thesis examines the
change in the optimal solution when going from a deterministic model to a stochastic

model that incorporates aircraft reliability. The analysis is contained in Chapter VI.

D. CALCULATION OF PENALTY

The number used for MOGPEN,, can have a dramatic impact on the optimal
solution. If MOGPEN,, = 0 (for all airfields 5 and time periods ¢), the stochastic model
will give the same solution as Throughput II (ignoring the use of E[MRTime,,] ). At the
other extreme, setting MOGPEN;, = +co (for all airfields » and time periods 7) will not
allow the model to exceed MOGCap, in any scenario; i.e., we recover the pessimistic
model (3.2). For example, if the worst case scenario had all aircraft break for 22 hours

(assuming a 2 hour onload per aircraft and MOGCap,, = 2), then the stochastic model will
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only send two aircraft to the airfield. This illustrates that the value used for MOGPEN,,
has a dramatic impact oﬁ the optimal solution.

As stated in Chapter II, one goal of the stochastic model is to determine the
optimal rate of flow of aircraft from origin to destination, a flow of aircraft that is not
interrupted by the random events of aircraft reliability. If the stochastic model exceeds
MOG for a specific scenario, the model needs to incur a cost for attempting to use more
resources than available. And this cost needs to be large enough so that the model
chooses the penalty for not delivering the cargo versus the penalty of exceeding MOG.
Specifically, when the model sends aircraft a to airfield b, this aircraft will require the
following amount of resources to service the aircraft (assuming the aircraft does

not break):

resources needed = MOGRegq,,*GTime,,, . (3.18)

Now if airfield 5 has no additional resources available for this aircraft (i.e. it is operating

at or above MOGCap,), then the recourse variable R,, will increase by

R? = MOGReq,,*GTime,,,. (3.19)
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The objective function will now increase by

MOGPEN, * R = MOGPEN,, * MOG Req,*GTime,, . (3.20)

This increase in the objective function must be larger than the maximum penalty that will

be incurred for not delivering the cargo,

Maximum penalty incurred for not
delivering one plane - load of cargo

MOGPEN,,* MOG Req,* GTime,, > [ ] (3.21)

The above equation can now be solved for MOGPEN,,.
E. SUMMARY OF UNDERLYING CONSTRUCTS

In developing the stochastic optimization model, various techniques were used to
reduce the number of scenarios and to model the impact of aircraft reliability on strategic

airlift operations.

e Modified repair time - impact of aircraft repair maintenance on MOG. The
actual impact is not accurately known and will depend on the experience of
Air Force personnel.
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Convolution. This technique is used to reduce the number of scenarios in the
model. To determine n, the optimal solution from Throughput Il is used as a
starting point.

f”,m. The accuracy lost in using f‘m to approximate 7,, will be examined. As

the number of realizations in 7, increases, the accuracy of the approximation
increases, but so does the number of constraints in the stochastic model.

MOGPEN,,. This penalty indirectly reduces the MOG value for an airfield

by forcing the airfield to operate at a percentage below MOG, allowing the
airfield to have resources available to repair broken aircraft.

E[Modified Repair Time]. In an airlift operation there will be delays in the
delivery of cargo caused by the unexpected grounding of aircraft for repairs.
Using the expected modified repair time in the calculation of determining the
arrival time of aircraft should improve the model.

There is no method available to check the first construct. On the other hand, the
remaining constructs can be verified, not individually, but as a whole by a simulation

model. This simulation model will be discussed in Chapter V.
F. MODEL FEATURES

This stochastic model, in addition to the features of Throughput II, accomplishes

the following:

Selection of aircraft routes by anticipating potential bottlenecks in the system.

Minimizes the number of unreliable aircraft that use capacity limited airfields
or airfields that have limited repair capability.

With the proper choice of MOGPEN,,, the optimal solution will achieve a
flow of cargo from origin to destination that is not interrupted by the random
events of aircraft reliability by forcing an airfield to operate at a percentage
of MOG.
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IV. BENDERS DECOMPOSITION

As shown in Chapter III, the stochastic optimization model is very large. To
solve this optimization model, we use B¢nders decomposition to convert the large
problem into many appropriately coordinated subproblems of manageable size. Section
A gives a broad overview of how Benders decomposition works, followed by the theory
(Van Slyke and Wets, 1969) in Section B. To solve the stochastic optimization model, an
algorithm based on Benders decomposition theory is implemented. An explanation of
this algorithm is contained in Section C. Then in Section D, the performance of this

algorithm in solving the stochastic optimization model is examined.
A. INTRODUCTION

The stochastic optimization model is inconvenient to solve directly due to the
large number of decision variables and structural constraints. Hence, one approach is to
adopt a relaxation strategy in which only a few of the constraints are explicitly
maintained. Using this approach, the strategy of the decomposition procedure is as
follows. The large LP is initially separated into two LPs which are called the Master and
the Subproblem. The Subproblem, in turn, separates into one subproblem for each
scenario. The Master consists of the general constraints (the deterministic constraints)
and the scenario-subproblems consist of special constraints (the stochastic constraints).

The decomposition algorithm begins by solving the Master first; the Master then passes
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down a new set of right-hand-side resources to the Subproblems; the Subproblems are
solved and then pass the Master a new set of constraints derived from these resources.
The Master is solved again (now consisting of the deterministic constraints and a set of
constraints derived from the stochastic subproblems) and the process repeats itself until

an optimal solution is obtained. This process is also called a row generation technique.
B. THEORY

To illustrate the ideas underlying Benders decomposition this section considers
the special case of a two-stage stochastic linear program with recourse in which there is
only one scenario. The extension to the more general case of many scenarios is
straightforward. We will also assume the second-stage subproblem is always feasible
given any first-stage decisions (called complete recourse). The assumption of complete
recourse 1is realistic whenever second-stage infeasibilities can be modeled via penalty
costs. To apply Benders decomposition, complete recourse is not required, but will

simplify the discussion. With this special case, the optimization model of interest is

minimize ox+ fy “4.1)
subject to Ax =b

—Bx+Wy =d

x20, y=20
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This problem (4.1) is equivalent to

minimize cx + h(x) (4.2)

subject to Ax=b

where h(x)=  minimize fy (4.3)

subjectto. Wy=d+ Bx

By taking the dual, the recourse function (4.3) can be written as

h(x) = maximize 71:'(d + Bx) (4.4)

subjectto AW < f.

Another assumption used .in Benders decomposition theory is that the second-stage
problem (4.3) is bounded. If it were unbounded for some finite first-stage decision, then
by duality theory the corresponding dual must be infeasible. Since the dual feasible
region is independent of x, unboundedness can occur in (4.3) only if it occurs for all x.

Since the second-stage problem is bounded, the recourse function attains an optimal
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solution at an extreme point. By enumerating the extreme points of the dual feasible

(1) 4 (2)

regionas 7”, w1 ... . w'", the recourse function (4.4) is equivalent to

h(x)= maximize 7 (d + Bx). (4.5)

Upon closer examination of the recourse function (4.5), it can be shown that for each

extreme point 7” of the dual feasible region, 7”d+ 7 Bx, as a function of x, is a

hyperplane; w’d is the intercept and 7B is the gradient. Each one of the L pieces of
h(x) is called a cut and these cuts are supports (or “pieces”) of the convex piecewise
linear recourse function. In summary, the recourse function is a piecewise linear, convex
function generated by the extreme points of the dual feasible region.

As a result of (4.2)/(4.5), the original linear program (4.1) can be written in a

form that suggests Benders algorithm:

minimize cx+6 (4.6)
subject to Ax=b

cuts -G'x+0 2g i=12,...L

where G' =n'"B and g' =n""d.
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As stated earlier, Benders decomposition is an iterative process. Initially, the
Master consists of the deterministic constraints and no cuts while the Subproblem is the
recourse function. In the first iteration, the Master problem is solved and passes a new
set of resources to the Subproblem. For the given first-stage decision vector, x, the
Subproblem will pass up a new cut to the Master problem which represents a “piece” of
the piecewise linear function A(x) that is a support at x. Now the Master problem consists
of the original deterministic constraints plus this cut. The process repeats itself until
optimality is achieved. The algorithm will be computationally efficient when only a
small subset of the potentially very large number of cuts needs to be generated.

During any iteration of Benders algorithm, only a subset of the necessary cuts

have been added to the Master problem. At each iteration, the Master problem is solved

for optimality, denoted (f,é),where the scalar value 6 is an estimate of the recourse

function, A(x). If the set of cuts in tﬁe Master problem is complete at & then 6 = (%)
and the algorithm terminates with an optimal solution. On the other hand, if the set of
cuts in the Master problem is incomplete at X, then 6 < h(x) and a cut is added to the
Master problem. As the set of cuts in the Master problem is augmented each iteration,
“more informed” first-stage decisions are made. The algorithm terminates when the
Master has sufficient information regarding the recourse function in the neighborhood of
an optimal first-stage decision.

During the execution of Benders algorithm, an upper and lower bound on the

optimal objective function value can be calculated. At any given iteration, the set of cuts
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in the Master problem provide a outer linearization of the convex recourse function.
Therefore, the lower boﬁnd on the objective function value is given by 3+ 0 4. As each
iteration progresses, the Master problem becomes more constrained as cuts are added,
therefore the lower bounds generated in successive iterations are increasing. On the
other hand, the upper bound on the objective function value is given by cf + fy. This
upper bound will not necessarily decrease in successive iterations, therefore the
algorithm should save the solution that corresponds to the least upper bound generated

so far.

At any given iteration, if the lower and upper bounds of the objective function
value are equal, the algorithm terminates. On the other hand, if the upper and lower

bounds do not match, then the Subproblem passes a new cut to the Master problem and

another iteration is completed.
C. ALGORITHM

It was shown in Chapter III, Section C that the stochastic optimization model

developed in this thesis has the following form:

minimize x+ 3 Y E by, (x,0) 4.7
b 1

subject to Ax=b

x20,
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where A, (x,0) = minimize MOGPEN, * R

1]
Rbr

subject to

WYY Y[MOGReq,*(GTime,, + MRTim

u a rekR, t'el, .
t"+| DTime,, |=t

o
eabt

)/ 24} X,

+3.>  X[MOGReq,,*(GTime,, + MRTime5,

r r'el,,
1"+| DTime,, |=t

- R,, < MOGCap,

) R2 20,

where the first-stage decision vector, x, is used to represent all decision variables
associated with the deterministic Throughput II model (see Appendix A). These include

aircraft scheduling, allocation and inventory decisions as well as accounting variables to

track deliveries of troops and equipment.

The stochastic optimization model (4.7) is unique because it has (b*¢) convex

piecewise linear recourse functions. Expanding upon the theory in Section B, model

(4.7) can be written in the following form that suggests Benders algorithm:
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min x+Y Y6, (4.8)
b ¢

subject to Ax=b
cuts -G, x+0,, >g, Vbt i=12,. L,

where G,, is the cut gradient and g;, is the cut intercept. The calculation for the cut
gradient and intercept expressions are contained in Appendix C. Application of Benders
algorithm proceeds as follows (see Figure IV-1 for the algorithm):

1. Initialization

A constant called TOLER is initialized to a value greater than zero (typically,
about 10™). This constant is used to compare the objective function value upper and

lower bound, denoted = and z respectively. Also, this step initializes 6, to zero for all

airfields b and time periods #; and sets the objective function value upper bound z to a

very large number.

2. Master Problem

The Master problem is solved and the optimal solution is denoted (%,8,,). Since
6 » Will be less than or equal to the associated recourse cost, the objective function value

lower bound can be calculated as
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ekt Y Y0, (4.9)
b 1

3. Subproblem

The first-stage decision solution X is passed to the subproblem. The recourse
function is solved, obtaining the value of R;, for all airfields b, time periods ¢ and
scenario @. With this information, along with the first-stage decision solution, the

objective function value Z can be calculated as

2 ci+ Y Y Y pp MOGPEN*RE . (4.10)
b t o

Since the upper bound Z does not necessarily decrease in successive iterations, a
comparison is made between Z and Z; if Z <Z then the upper bound is set equal to the

current objective function value Z and the associated solution X is saved.
4.  Optimality Check

A comparison is made between the upper and lower bounds on the optimal

objective function value. Specifically, if Z—z < TOLERxz then the algorithm

terminates. If not, the algorithm proceeds to Step 5.
S. Addition of Cuts

The following set of cuts is added to the Master problem

49




—-Gyx +0,, 2gl V bt

(4.11)

and the algorithm solves the Master problem (go to Step 2). Again, see Appendix C for

the details of this calculation.

Step 1

Step 2

Step 3

Step 4

Step S5

Define TOLER > 0
Initialize set of cuts with 8;,, >0 V b,¢

Z ¢ foo
Solve the master problem and obtain ()?,(5,,,)
T+ 22 6,
bt
Calculate R,, V b,t,0
2eck+ Y Y Y pp MOGPEN* R
bt o
IfZ<ZthenZ ¢« Zand x" « *
If Z-z < TOLER*: thenstop. x is solution.

Augment the set of cuts with -G,,x +6,, >gi V bt

Goto Step 2.

Figure IV-1: Benders Decomposition Algorithm.
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D. PERFORMANCE

The algorithm was coded using the FORTRAN 77 programming language and
IBM’s Optimization Subroutine Library (IBM, 1991).
To improve the efficiency of the algorithm, two techniques are used. Each time

the algorithm reaches Step 5 (see Figure IV-1), the algorithm will pass (b*¢) cuts to the

Master problem, resulting in possible redundant constraints. To remedy this potential

problem, a cut for airfield » and time period 7 is passed to the Master problem only if
0, < E by, (£,0).
The second technique is an application of Jensen’s inequality. For a fixed first-

stage decision X the recourse functions A, (X,) are convex functions of the modified

repair time vector, MRTime,, Due to Jensen’s inequality, the expected recourse

function £ h, (X,w) is bounded below by the second-stage cost when we substitute

E[MRTime,,] for the random ground times. As stated in Chapter III, Section B.5, the
stochastic optimization model uses the original deterministic MOG constraints. By using
the expected value of the modified repair time random variable, in addition to the
standard ground time, the deterministic MOG constraints provide a “more informed”
first-stage decision in the earlier iterations of the algorithm. Theh in subsequent
iterations, cuts derived from the stochastic MOG constraints “correct” for this optimism.
Using the algorithm shown in Figure IV-1, the stochastic optimization model

solves in under 20 minutes on a IBM RS6000 model 590 workstation (the deterministic
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model, using GAMS, solves in under two minutes), obtaining a near-optimal solution
(TOLER = .01). With MOGPEN,, = .04 for all airfields » and time periods ¢, the
algorithm terminates in only nine iterations. As shown in Chapter III, Section C, the
stochastic optimization model has a total of 357,591 constraints. By using Benders
algorithm, the first iteration started with 7,671 constraints (the deterministic constraints

of Throughput IT) and the last iteration only had an additional 1,087 stochastic cuts.
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V. SIMULATION

This thesis describes two optimization models of the strategic airlift system, a
deterministic and stochastic optimization model. Both models produce a recommended
deployment schedule, based on four sets of decision variables (X, Yau, Allot,, and
Release,,. See Appendix A fof more details.). For example, one decision variable, X,
will require five C5 aircraft to fly from the onload airfield Travis to the offload airfield
Riyadh starting in period two carrying Unit Bravo. Then another decision variable, Y,,,,
will have these five C5 aircraft fly back from Riyadh to Travis starting in period three.
However this recommended deployment schedule was developed by an optimization
model with its associated modeling techniques and assumptions. So, can this deployment
schedule be executed by the Air Mobility Command of the United States Air Force? To
address this question, a discrete-event simulation model of the strategic airlift system is
developed. The simulation model attempts to execute a given deployment schedule and
allows the user to analyze the recommended schedule.

For this thesis the simulation model is used to execute the deployment schedule
from the optimization models. The output from the simulation model is then used both
to analyze the deterministic and stochastic models and also to compare their proposed
deployment schedules. Just as important, examining the results of an optimization model
via a simulation model can provide useful feedback with respect to the validity of various

linear programming modeling assumptions. The methodology used to develop the
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simulation model is described in Section A. Section B gives a broad overview of the
simulation model followed by a more detailed discussion in Section C. Then in Section

D, the performance of this simulation model is examined.

A. METHODOLOGY

The simulation is a discrete-event simulation model of the strategic airlift system.
Given a deployment schedule, the simulation will attempt to execute this schedule. Two
key concepts are employed in the model. The first key concept is a “blind” execution of
the proposed deployment schedule. For example, all aircraft will fly spéciﬁc routes, even
if that route is congested at downstream airfields and a better route is available. This
“blind” execution will allow analysis of the proposed schedule. A properly planned
deployment schedule will have aircraft land and immediately be serviced. On the other
hand, a poorly planned schedule will result in delays as aircraft wait for service at
congested airfields.

The second key concept is the ability to execute the simulation model with
various options. One option allows the user to turn “ON” or “OFF” the MOG constraint
at each airfield. When the MOG constraint is “OFF,” all aircraft will land and
immediately be serviced even when the MOG limit at that airfield is exceeded. On the
other hand, the MOG constraint “ON” option enforces the MOG limit at each airfield.
The ability to turn the MOG constraint “ON” or “OFF” will allow the user to examine the
effect of a MOG constraint on the proposed schedule. A second option allows the user to

run the simulation model with aircraft reliability “ON” or “OFF. When the aircraft
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reliability option is “OFF,” aircraft never break upon landing; on the other hand the
aircraft reliability “ON” option allows for the possibility for aircraft to break. This
option will allow the user to analyze the effect of aircraft reliability on the proposed

deployment schedule.
B. OVERVIEW

This section gives a broad overview of the simulation model. A more detailed

discussion is contained in Section C.
1. Deployment Schedule

The simulation model executes a given deployment schedule. Therefore the
simulation does not need to determine which route a loaded aircraft will fly, or the
amount of cargo to load onto an aircraft. These decisions have been determined by the
optimization models and are represented by four types of decision variables. Therefore
this deployment schedule given by four types of decision variables is the driving force in

the simulation model.
a. Airlift Mission Orders (X Orders)

One type of decision variable is the actual airlift missions flown by the
aircraft from onload to offload airfields. This decision vector [X,,,] states how many

aircraft of type a will transport unit u starting in period 7 using route ». To convert this
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variable to the simulation model, there will be X, individual X orders.? Each individual
X order will arrive at airfield 4 in time period ¢. The X order requires one aircraft of type
a to transport cargo and/or troops from unit » along route ». When the X order arrives at
airfield 4 in time period ¢, one of two outcomes will occur. If there is an available
aircraft of type a at airfield b, this X order is assigned to the aircraft. Once this
.assignment 1s made, the aircraft will execute the order. On the other hand if there are no
aircraft of type a available at airfield b, the X order is assigned to a first-in, first-out
(FIFO) queue at airfield 5. When an aircraft of type a becomes available at airfield 4 at a
later time, the X order is assigned to the aircraft.

Once the X order is assigned, the aircraft will consume MOG resources
and onload cargo for unit u. Oncé the onload is complete the aircraft will take off and fly
along route r. If the required route has any enroute airfields the aircraft will land at the
enroute airﬁeld and the repair time random variable is used to determine the required
repair time if the reliability option is “ON.” The aircraft will then consume MOG
resources to refuel the aircraft and, if needed, repair the aircraft. When complete the
aircraft will take off and continue to fly along route . Eventually the aircraft will land at
the offload airfield. Once again the repair time random variable is used to determine the

required repair time if the reliability option is “ON.” The aircraft will consume MOG

2 The decision variables are continuous numbers. The simulation model will convert the continuous
number to an integer by (1) rounding, (2) rounding down or (3) rounding up the solution from the
optimization model. The simulation model allows the user to choose one of these three options for each

type of decision variable X,..,., Yo, Allot,,, and Release,,.
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resources to offload the cargo and, if needed, complete repairs. When complete one of
two outcomes will occur. If there is an old Y order (to be discussed in the next
subsection) at airfield 5 for an aircraft of type a, the order will be assigned to the aircraft
and the aircraft will execute the order. On the other hand if no Y order exists, the aircraft

will remain in inventory at airfield 5 and wait for a future order to arrive.
b. Aircraft Recovery Orders (Y Order)

Another type of decision variable is the recovery flights of aircraft from
the offload airfields back to the onload airfields. This decision vector [Y,,] states how
many aircraft of type a are to fly recovery route r starting in period . To convert this
variable to the simulation model, Y,,, individual Y orders will arrive at airfield 4 in time
period 7. Each individual Y order requires an aircraft of type a to fly recovery route r.
When the Y order arrives at airfield b‘ in time period ¢, one of two outcomes will occur.
If there is an aircraft of type a at airfield b, this Y order is assigned to the aircraft. Once
this assignment is made, the aircraft will execute the order. On the other hand, if there
are no aircraft of type a available at airfield b, the Y order is assigned to a FIFO queue at
airfield . When aﬁ aircraft of type a becomes available at airfield b at a later time, the Y
order is assigned to the aircraft.

Once the Y order is assigned, the aircraft will immediately take off and fly
along route r. Eventually the aircraft will land at the onload airfield and the repair time
random variable is used to determine the required repair time if the reliability option is

“ON.” At this point, one of two outcomes will occur depending on whether the aircraft is
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mission capable or not. If the aircraft is mission capable, the aircraft will either be
assigned an X order that arrived at the airfield at an earlier time for an aircraft of type a,
or the aircraft will be placed in inventory at airfield » and wait for an X order to arrive.
On the other hand, if the aircraft requires repair work, the aircraft will consume MOG
resources to complete repairs. Once the repairs are complete, the aircraft will either
execute an X order that arrived at the airfield at an earlier time for an aircraft of type a,

or the aircraft will be placed in inventory at airfield » and wait for a future X order

to arrive.

c. Aircraft Allotment Orders (A Order)

The third type of decision variable is the allotment of aircraft to the airlift
system. This decision vector [Allot ] states how many aircraft of type a to add to onload
airfield 4 in time period . During the execution of the simulation, Allot,, individual A
orders will be executed in time period #. Each A order will add one aircraft of type a to
onload airfield 4 in time period +. When the aircraft arrives in time period ¢ at onload
airfield b, one of two outcomes will occur. If there is an old X order for an aircraft of
type a at airfield b, the order is assigned to the aircraft and the order is executed. On the
other hand, if there are no X orders at airfield 4, the aircraft will be placed in inventory at

airfield 4 until an X order arrives.
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d Aircraft Release Orders (R Order)

The last group of decision variables releases aircraft from the airlift
system. This decision vector [Release,,] states how many aircraft of type a are to be
released from onload airfield 4 in time period . During the execution of the simulation,
Release,, individual R orders will arrive at bnload airfield 4 in time period . One of two
outcomes will occur. If there exists an available aircraft of type a at airfield b, the
aircraft will leave the airlift system. On the other hand, if there are no aircraft of type a
available, the order will wait in a queue (FIFO) until an aircraft of type a arrives. When
an aircraft of type a is available, the assignment of the R order takes precedence over an

X order.
2. Aircraft Service Priority

One very important modeling issue is the priority for processing aircraft at the
airfields. When the MOG constraint option is “OFF,” aircraft will land and immediately
consume MOG resources as required. But when the MOG constraint option is “ON,”
some rule must be used to prioritize the aircraft. When aircraft require service (onload,
refuel, offload, or aircraft repairs) in the simulation, the aircraft are assigned either a
code-one or code-two service priority. The distinction is as follows. When an airfield is
MOG constrained, code-one aircraft are always serviced first, followed by code-two
aircraft. Also, if a code-one aircraft arrives at a MOG constrained airfield, the simulation

will interrupt any code-two aircraft that are consuming MOG resources. For example,
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suppose an airfield is MOG constrained with a specified number of code-two aircraft
consuming MOG resources. If a code-one aircraft lands, the required number of code-
two aircraft will be interrupted to allow the code-one aircraft to consume
MOG resources.

The assignment of service priorities is as follows. A code-two service priority is
always assigned to an aircraft that is non-mission capable (i.e., breaks) upon landing.
This will allow code-one aircraft to immediately be serviced and complete their mission.
A code-one service priority can be assigned to an aircraft in one of two ways. First, if an
aircraft is mission capable upon landing and requires MOG resources, the airpraft is
assigned a code-one service priority. The second way an aircraft can be assigned a code-
one service priority is as follows. If an aircraft is non-mission capable after landing, a
code-two service priority is assigned to the aircraft. Now if the airfield is MOG
constrained, thé aircraft will wait until all code-one aircraft have been serviced, but this
can be an indefinite amount of time since aircraft may continue to arrive. Therefore, one
assumption in the simulation model is that all aircraft must be repaired within the repair
time random variable realization. With this assumption, the simulation will upgrade a
code-two aircraft to code-one after a predetermined amount of repair/waiting
time elapses.

To determine the time a code-two aircraft is upgraded to code-one is as follows.
When an aircraft lands at an airfield and breaks, the required repair time realization- and

associated modified repair time realization are known. The repair time realization is the

60




number of hours until the aircraft is mission capable. The modified repair time
realization is the hours of MOG resources required to repair this aircraft. As stated
earlier, the simulation will attempt to repair all aircraft within the repair time random
variable realization. Thus if the repair time realization is two hours and the modified
repair time realization is two hours, this aircraft must consume MOG resources
immediately to complete repairs. In this case the aircraft, upon breaking, is assigned a
service priority of code-one, not code-two. On the other hand if the repair time random
variable realization is 72 hours and the modified repair time realization is 30 hours, this
aircraft can wait at most 42 hours prior to consuming MOG resources. In this case, the
aircraft will transition to code-one after waiting 42 hours to consume MOG resources.

In general the difference between the remaining repair time and the remaining
modified repair time is called the Slack Time. When the aircraft initially breaks, the
Slack Time is. equal to the repair time realization minus the modified repair time

- realization. When the aircraft is waiting to consume MOG resources, the remaining
repair time is decreasing linearly with time. As the remaining repair time decreases
linearly with time, eventually the Slack Time will equal zero. At this time the aircraft
will be upgraded from code-two to code-one. On the other hand i‘f the aircraft is
consuming MOG resources, the remaining repair time and modified repair time are both
decreasing linearly with time. Therefore while the aircraft is consuming MOG resources,

it is impossible for the aircraft to be upgraded from code-two to code-one.
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Two criteria are used to determine when a non-mission capable aircraft becomes
mission capable. First, the modified repair time requirement must be satisfied. This can
only be accomplished when the aircraft consumes MOG resources for the required
amount of time. The second criteria is the repair time must be satisfied. This is
equivalent to requiring that the Slack Time equal zero. The second criteria is needed for
the following reason. If a code-two aircraft immediately consumes MOG resources upon
landing, the modified repair time criteria has been met. But the modified repair time is a
measure of the impact of this broken aircraft on MOG. In reality, the plane will not be

available until the repair time requirement has been satisfied.

3. Output

The purpose of the simulation model is to examine the feasibility of an airlift
deployment schedule and to compare the solution provided by the deterministic and
stochastic solutions. With this in mind, two key outputs from the simulation model are
the delivery profile and landing profile graphs. The delivery profile graph plots the total
amount of cargo and passengers delivered (in stons) to the offload bases versus time.
The landing profile graph plots the total number of aircraft landings at the offload bases
versus time. These graphs are extremely useful in examining the proposed schedule from
an optimization model and to compare the solution from the deterministic and stochastic
optimization models. This will be discussed further in Chapter VI.

Another useful output from the simulation model is a graph of the number of

aircraft that are waiting for or consuming MOG resources versus time for each airfield.

62




A quick look at the graph allows the user to determine at what time an airfield is MOG

constrained and by how much.

C. MODEL
Tﬁis section gives a detailed description of the simulation model.
1. Input Data

The required input data to run the simulation model is as follows:

e Airfield data. To execute a deployment schedule, the only data required is the
latitude/longitude and MOG value of each airfield. The latitude/longitude is
used to compute the distance between each airfield.

e Aircraft data. The only data required is the block speed and the deterministic
ground time for the each aircraft type. The block speed will allow the
simulation model to correctly compute the time for an aircraft to fly
between airfields.

e Aircraft reliability. This input file gives the repair time random variable
realizations, modified repair times realizations and associated probabilities for

C5, C17 and C141 aircraft. All other aircraft do not break.

e Routes. This data is used in conjunction with the optimization solution so the
simulation can properly route aircraft from airfield to airfield.

e Optimization solution. The driving force for the simulation is the deployment

schedule developed by the optimization models. This consist of four groups
of decision variables X, ..., Yo, Allot,, Release . '

2, Queuing System for MOG Consumption

There are a total of eight queues used to properly process aircraft. They are

described below and a diagram is shown in Figure V-1.
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a. Taxi Queue

If the airfield is MOG constrained, aircraft are placed in the Taxi (FIFO)
Queue. When a unit or partial unit of MOG becomes available, the next aircraft in the
Taxi Queue will enter the Code-1F, Code-1P, Code-2F or Code-2P Queue.- If the next
aircraft in line has a service priority of code-two, the aircraft immediately enters the

Hold-In Queue and time now counts toward the repair time requirement.
b. Code-1F Queue

This queue is for aircraft with a service priority of code-one. Each aircraft
1s consuming a full unit of MOG and time is counting toward both the modified repair
time and repair time requirement (if any). The aircraft will remain in this queue for an
amount of time equal to the modified repair time plus the standard ground time. When

services are complete, the aircraft will then exit.
c Code-1P Queue

This queue is for aircraft with a service priority of code-one, but the
aircraft is only consuming a partial unit of MOG. At any given time, there will be at
most one aircraft in this queue. Time is counting toward both the modified repair time
and repair time requirement (if any). If an aircraft leaves the Code-1F Queue at a MOG
constrained airfield, the aircraft in the Code-1P Queue, if 1t exists, will enter the Code-1F

Queue and consume a full unit of MOG. It is also possible for an aircraft to remain in the
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Code-1P Queue long enough to satisfy the modified repair time requirement plus the

standard ground time, at which time it will exit.
d. Code-2F Queue

This queue is for aircraft with a service priority of code-twoi where each
aircraft is consuming a full unit of MOG. Time is counting toward both the modified
repair time and repair time requirement. The aircraft will remain in this queue for an
amount of time equal to the modified repair time plus the standard ground time. When
services are complete the aircraft will enter the Hold-Out Queue until the repair time
requirement is satisfied. If at any time a code-one aircraft needs to consume resources
and the airfield is MOG constrained, the required number of aircraft in the Code-2F

Queue, if any, will be interrupted and enter the Hold-In Queue.

e Code-2P Queue

This queue is for an aircraft with a service priority of code-two but this
aircraft is only consuming a partial unit of MOG. At any given time, there will be at
most one aircraft in this queue. Time is counting toward both the modified repair time
and repair time requirement. When an aircraft leaves the Code-2F or Code-1F Queue and
the airfield is MOG constrained, the aircraft in the Code-2P Queue, if it exists, will enter
the Code-2F Queue and consume a full unit of MOG. 1t is also possible for the aircraft to
satisfy the modified repair time requirement plus the standard ground time while the

aircraft is in this queue, at which time the aircraft will enter the Hold-Out Queue until the
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repair time requirement is satisfied. If at any time a code-one aircraft needs to consume
resources and the airfield is MOG constrained, the aircraft in the Code-2P, if there is one,

will be interrupted and enter the Hold-In Queue.

JA Hold-In Queue

Only code-two aircraft enter this queue. Time is counting toward the
repair time requirement. When a unit or partial unit of MOG becomes available in either
the Code-2F or Code-2P Queue, an aircraft, if any, will leave the Hold-In Queue and
enter the appropriate queue. If the Slack Time reaches zero for any aircraft while in this

queue, the aircraft will be upgraded to code-one and enter the Upgrade Queue.

2. Upgrade Queue

Only aircraft that have been upgraded from code-two to code-one enter
this queue. From the Upgrade Queue aircraft will enter either the Code-1F or Code-1P

Queue when a unit or partial unit of MOG becomes available.

h. Hold-Out Queue

This queue is for code-two aircraft that have satisfied the modified repair
time requirement, but have yet to satisfy the repair time requirement. The aircraft is not

consuming MOG resources. When the repair time requirement has been satisfied, the

aircraft will exit.
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Time counts toward the repair time requirement.

Figure V-1: Queuing System for MOG Consumption.




Priorities Among Queues

When an aircraft has completed consuming MOG resources, the

simulation will use the following priority to determine the next aircraft to consume

MOG resources:

Rl

Code-1P Queue
Code-2P Queue
Upgrade Queue
Taxi Queue

Hold-In Queue.

3. State Variables

In simulation models, state variables are a collection of variables necessary to

describe a system at a particular time. For this simulation model the state variables can

be grouped into two general categories.

a
Aircraft Type
ID Number

Cargo

Cargo ID

Break Code

Status

Aircraft State Variables

Defines the aircraft type; e.g., C5, C17, C130, C141, 747C,
747P, DC10.

The identification number of the aircraft. This allows the
simulation to track each individual aircraft.

This variable is true if the aircraft has cargo onboard and fully
loaded, and false otherwise.

The name of the unit being transported by the aircraft.

Defines the required repair time for the aircraft (MC, two, six,
ten, fourteen, twenty, thirty-six, sixty, and seventy-two).

Defines the stage of the aircraft in the system. They are as

follow: atrborne, onload, refuel, offload, repair, inventory, pre-
airlift (the aircraft has not yet entered the airlift system) and
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post-airlift (the aircraft has been released from the
airlift system).

Service Priority When an aircraft needs to consume MOG resources, this state
variable gives the location of the aircraft in the queuing system
for MOG consumption (see Figure V-1). The possible values are
taxi, code-1F, code-1P, code-2F, code-2P, hold-in, hold-out,
upgrade and NA (the aircraft does not require MOG services).

Current Base  The name of the airfield where the aircraft is currently located.

Entered Service The time the aircraft left the Taxi Queue and entered the Code-
1F, Code-1P, Code-2F, Code-2P or the Hold-In Queue.

MOG Time The total hours of MOG resources required by this aircraft. This
includes the standard ground time and the modified repair time.

Cum Time The current amount of MOG resources consumed by the aircraft.

b. Airfield State Variables

Name The name of the airfield.

Lat The latitude position of the airfield.

Long The longitude position of the airfield.

MOGReq The narrow-body equivalent requirement for each aircraft type
for this airfield.

MOG The narrow-body.MOG limit.

Current The number of narrow-body equivalent aircraft consuming

MOG resources.

Req’d The number of narrow-body equivalent aircraft that are
consuming MOG resources and those aircraft that need to
consume MOG resources. Specifically, this is the narrow body
equivalent sum of aircraft whose service priority state vanable is
equal to code-1F, code-1P, code-2F, code-2P, taxi, and upgrade.
This is used as a measure of how much the MOG value is
being exceeded.
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R Orders There is a FIFO queue for each aircraft type. Each queue holds
old R orders that still need to be executed.

X Order There is a FIFO queue for each aircraft type. Each queue holds
old X orders that still need to be executed.

Y Order There is a FIFO queue for each aircraft type. Each queue hoids
old Y orders that still need to be executed.

Inv Lists all aircraft that are being held as inventory at this airfield.

Taxi Lists the aircraft assigned to the Taxi Queue for that airfield.

CodelF Lists the aircraft assigned to the Code-1F Queue for that airfield.

CodelP Lists the aircraft assigned to the Code-1P Queue for that airfield.

Code2F Lists the aircraft assigned to the Code-2F Queue for that airfield.

Code2P Lists the aircraft assigned to the Code-2P Queue for that airfield.

Upgrade Lists the aircraft assigned to the Upgrade Queue for that airfield.

HoldIn Lists the aircraft assigned to the Hold-In Queue for that airfield.

HoldOut Lists the aircraft assigned to the Hold-Out Queue for
that airfield.

4. Events

In simulation modeling events are defined as an instantaneous occurrence that
may change the state of the system. The events used in this simulation ﬁodel are briefly
described below and the event diagrams are contained in Appendix E.

Allot Order This event adds an aircraft to an onload airfield. The aircraft

will either remain in inventory at the airfield or be assigned an

old X order. If an old X order exists the aircraft will execute that
X order. The event diagram is contained in Figure D-1.
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Release Order

X Order

Y Order

Land

Ready-1F

" Ready-1P

Ready-2F

Ready-2P

This event attempts to remove an aircraft from the airlift system.
If the aircraft is not available, the order will enter a FIFO queue
at the airfield until the appropriate aircraft arrives. The event
diagram is contained in Figure D-2.

This event attempts to execute a new X order. If there is an
available aircraft, the X order is assigned to the aircraft and the
aircraft will execute the X order. If there are no aircraft
available, the X order is entered in a FIFO queue at the specified
airfield. The event diagram is contained in Figure D-3.

This event attempts to execute a new Y order. If there is an
available aircraft, the Y order is assigned to the aircraft and the
aircraft immediately takes off. On the other hand, if there are no
available aircraft, the Y order is entered in a FIFO queue at the
specified airfield. The event diagram is contained in Figure D-4.

This event lands an aircraft at an airfield. If the reliability option
is “ON,” the repair time random variable is used to determine the
amount of time required to repair the aircraft. If the aircraft just
arrived at an onload airfield and is mission capable, the aircraft
is available to execute an X order. If the aircraft needs to refuel,
offload or complete repairs, the aircraft will consume MOG
resources. The event diagram is contained in Figure D-5.

A specific aircraft in a Code-1F Queue just completed
consuming MOG resources and will exit. The aircraft will
continue to execute its assigned order. The event diagram is
contained in Figure D-7.

A specific aircraft in a Code-1P Queue just completed
consuming MOG resources and will exit. The aircraft will
continue to execute its assigned order. The event diagram is
contained in Figure D-7.

A specific aircraft in a Code-2F Queue just completed
consuming MOG resources. The aircraft will enter the Hold-Out
Queue. The event diagram is contained in Figure D-8.

A specific aircraft in a Code-2P Queue just completed
consuming MOG resources. The aircraft will enter the Hold-Out
Queue. The event diagram is contained in Figure D-8.




Ready-Hold A specific aircraft in the Hold-Out Queue has satisfied the repair
time requirement and will continue its mission. The event
diagram is contained is Figure D-10.

Transition A specific aircraft in the Hold-In Queue is upgraded from a
service priority of code-two to code-one. The aircraft is removed

from the Hold-In Queue and entered in the Upgrade Queue. The
event diagram is contained in Figure D-11.

5. Execution Options

There are numerous options available in the simulation. The main options are

described below.
a. Time to Execute Orders

As stated earlier, the optimization models use discrete time periods, but
the simulation model has a continuous time spectrum. For example, an optimization
model solution.might add four C5 aircraft to airfield 4 in day two. But in the simulation,
day two extends from 24 to 48 hours'. At what time should the simulation model add
these aircraft? To address this issue the simulation model provides the user with two
options. Using the first option, the simulation model will have all new orders arrive at
the beginning of the corresponding time period. Using the second option, the simulation
model will uniformly spread the new orders throughout the time period. For example,‘
suppose the optimization model requires that four C5 aircraft be added to airfield 4 in

day two. Using the second option, the simulation will add the four C5 aircraft at hours

24,30, 36 and 42.
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b. Converting the Continuous Decision Variable Solutions to

Integers

The four groups of decision variables are used as input data for the

simulation model. But the variables are continuous numbers and the simulation must use
integer numbers. Therefore for each one of the four decision variables, the user has three
options. They are (1) round-down, (2) round, and (3) round-up. This will be discussed

further in Chapter VL
c. MOG constraint

If this option is “ON” the simulation model will enforce the MOG
constraint at each airfield. On the other hand if this option is “OFF,” all aircraft will
consume MOG resources as needed even when the MOG limit at that airfield

is exceeded.
d Aircraft Reliability

When the aircraft reliability option is “OFF,” aircraft never break upon
landing; on the other hand the aircraft reliability “ON” option allows for the possibility

for aircraft to break.
D. PERFORMANCE

The simulation model is coded using Borland Pascal with Objects (Borland,
1992). If the simulation model is run with the reliability option “OFF,” only one run 1s

required and this run takes about 12 seconds (486 DX2 66 Hz computer). If the
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simulation model is run with the reliability option “ON,” multiple runs are required until

steady state is achieved and this takes about six hours.
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VI. ANALYSIS

This chapter reports the results of using the simulation model as a tool to analyze

the deterministic and stochastic optimization models. For all analyses a base scenario

_developéd by the U.S. Air Force Studies and Analyses Agency is used. Section A
discusses two separate issues that must be resolved before the simulation can be used as

an analytical tool. Then in Section B the simulation model is used to examine the effect

of the deterministic MOG efficiency factor. Section C reports the results of using the

simulation model to analyze the deterministic model. Finally, Section D compares the

deterministic and stochastic optimization models using the simulation.

A. COUPLING OF THE OPTIMIZATION MODELS WITH SIMULATION
Section A explains default settings for two options that may be set by the user.
1. Converting the Continuous Decision Variable Solution to Integers

As stated earlier, the four types of decision variables passed to the simulation
from the optimizétion model are continuous numbers. To convert the continuous
decision variable solution to integers, the simulation model will round-down, round, or
round-up depending on the option chosen by the user. The following criteria is used to
choose the correct setting for this option for each type of decision variable. Since the
simulation model is used to study the deployment schedule recommended by the

optimization models, the simulation model needs to execute the same number of airlift
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missions (X orders) and recovery flights (Y orders). For example if the total number of
airlift missions in the deterministic model is 100.40, the simulation model needs to
execute a total of 100 or 101 X orders. Once this is achieved, there will still be an error
associated with the individual rounding of the decision variable solution. For example,
one airlift mission might require 12.5 CS aircraft to airlift unit # using route r starting in
time period ¢, but if the round-up option is used, this will be translated to 13 C5 aircraft.
To examine the impact of this issue, the‘ deterministic optimization model is
solved with a MOG efficiency factor equal to one. Using this solution as input, the
simulation model is executed using the three different round options for each one of the
four types of decision variables. When the round-down option is used for the X orders, a
total of 3,624 X orders are generated in the simulation model compared to the original
number of 3,734.40 from the optimization model. In this case the simulation will
attempt to execute 3,624 X orders and is 110.40 short of the required amount. Using the
round-down option for the Y orders, the simulation attempts to execute 3,280 Y orders
compared to 3,388.70 from the optimization model. In this case the Y orders are short by
108.7. In summary the.round-down option results in a total of 219.1 X and Y orders that
are not considered for execution in the simulation model. The same analysis can be
performed for the round and round-up option. See Table VI-1 for a summary of

the results.
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Round-Down Round Round-Up

Sum of X Orders - Simulation 3624 3734 3836
Sum of X Orders - Optimization 3734.4 3734.4 3734.4
X Order Excess -110.4 -0.4 101.6
Sum of Y Orders - Simulation 3280 3387 3499
Sum of Y Orders - Optimization 3388.7 3388.7 3388.7
Y Order Excess -108.7 -1.7 110.3
X and Y Order Excess -219.1 -2.1 211.9
Number of X Orders Not Executed 12 3 5
Number of Y Orders Not Executed 10 2 14
Number of X and Y Orders Not Executed 22 5 19
Corrected X and Y Order Excess -241.1 -7.1 192.9

Table VI-1: Simulation Performance versus Round Option. The deterministic
optimization model (MOGEff = 1.00) is used as input into the
simulation model. '

There is a consequence of converting the continuous decision variable solution to
integers. The optimization models use aircraft balance constraints at onload and offload
airfields to ensure there are aircraft ‘available to fly the airlift missions and recovery
flights. When the decision variable solution is converted from a continuous number to an
integer, this aircraft ba_lance might no longer exist. In the simulation, for example, an X
order will not be executed if there was no corresponding Y order to return the required
aircraft type to that airfield. Therefore at the completion of one run, the simulation will
count the number of X and Y orders that are not executed. The results are also
summarized in Table VI-1.

As shown in Table VI-1, when the round-down option is used for X and Y orders

the simulation model needs to execute an additional 241.10 X and Y orders to properly
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model the flow of aircraft through the airlift infrastructure. The round-up option
executes an extra 19290 X and Y orders. However, by using the round option, the
simulation is only short by 7.10 orders. Therefore when using a MOG efficiency factor
equal to one, the round option closely matches the optimization model. Similar results
are obtained if different MOG efficiency factors are used. Therefore all analyses use the
round option for X and Y orders.

In converting the continuous decision variable solution associated with the
allotment and release of aircraft, all analyses use the round option. In most cases there is
no difference between the number of aircraft used in the optimization and the

simulation models.
2. Arrival of Orders

A second simulation option that the user may control regards scheduling the
arrival of orders within the time periods given by the optimizatiop models. As stated
earlier the optimization models use discrete time periods, but the simulation model has a
continuous time spectrum. To address this issue, the simulation model gives the user two
options. The first option will have all érders arrive at the very beginning of the time
period, denoted “0000.” The second option will have the orders arrive uniformly
throughout the time period, denoted “uniform.” Table VI-2 illustrates the option used in

all analyses for each decision variable.
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Decision Variable Option
X yart uniform

Y art 0000

Allot ¢ uniform
Release uniform

Table VI-2: Arrival of Orders Option.

The reason for this choice is as follows. The simulation should use a realistic
schedule within the time periods. In airlift operations the Air Force attempts to maintain
sufficient spread between departure times so as to minimize congestion at onload,
enroute and offload airfields. This same type of concept is applied in the simulation
model by using the “uniform” option for A (If there are old X orders at the airfield,
aircraft will be assigned the X orders and request MOG services to onload the cargo.) and
X orders. On the other hand, when the aircraft arrive at the destination and offload their
cargo in airlift operations, they will immediately take off and return to an onload airfield.
Therefore the “0000™ option is used for the arrival of Y orders at offload airfields.
Finally, the “uniform” option is used for the arrival of R orders to uniformly spread the
departure of aircraft from the airlift system throughput the time period.

The options shown in Table VI-2 result in the simulation behaving in a consistent
fashion. Using thé simulation model with the MOG constraint option “OFF” and the
reliability option “OFF,” all aircraft will immediately consume MOG as required and
experience no delays caused by breakage. This results in a verbatim execution of the
airlift schedule. By examining simulation output graphs similar to Figure VI-1 for all

airfields, analysts can determine when the given schedule is exceeding the capacity of an
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airfield. By varying the arrival options, the user can determine the best combination for
all decision variables. For example the “0000” option for all four decision variables
yields the solid line in Figure VI-1. In this case the capacity of Travis airfield is
exceeded on days six, eight and eleven. Upon closer examination of the scenario,
aircraft are allotted to Travis airfield on day six and eleven at midnight. But there are old
X orders existing at the airfield. Therefore the X orders are immediately assigned to the
aircraft and the capacity of the airfield is exceeded as the aircraft onload their cargo.
Thus the solid line in Figure VI-1 will result in delays as aircraft wait for service when
the MOG constraint is enforced. On the other hand, the dash line is obtained by using the
recommended options and results in a more uniform arrival rate and consumption

of MOG.
B. DETERMINISTIC MOG EFFICIENCY FACTOR

As stated in Chapter 11, aircraft turnaround times for onloading and offloading
cargo and enroute refueling are assumed to be known constants in fhe Throughput II
model, although they are naturally stochastic. This ignores the fact that deviations from
the given service time can cause congestion on the ground. To offset the optimism of
this assumption, Throughput II uses an efficiency factor (<1) in the formulation of MOG
consumption constraints to lessen the impact of randomness. This section estimates a

reasonable value for this MOG efficiency factor.
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Figure VI-1: Simulation Output Graph of Travis Airfield. The deterministic model
(MOGEff = 1.00) is used as input into the simulation model. The
simulation is then run with the following options: MOG “OFF,” reliability
“OFF.”

1. Methodology

The following approach is used to estimate a reasonable value for the deterministic MOG

efficiency factor.
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a Optimization Model

Solve the deterministic optimization model with a specified MOG

efficiency factor and obtain the delivery profile graph (Figure VI-2).
b. Effect of Discrete Time Periods

Using the deterministic solution as input, run the simulation model with
the following options: reliability “OFF” and MOG “OFF.” The delivery profile graph
obtained from this simulation run will differ from step (a); the difference between the
two delivery profile graphs shows the effect of the discrete time periods of the
optimization model. Examining Figure VI-2, the simulation completed the delivery of

cargo on day 31 compared to day 26 for the optimization model.
c Effect of Aircraft Reliability

Perform another simulation run with the following options: reliability
“ON” and MOG “OFF.” This delivery profile graph takes into account aircraft reliability
and reflects the minimum delay (since the MOG constraint is “OFF”) to deliver all the

cargo as aircraft spend more time on the ground to complete repairs (see Figure VI-2).
d Effect of MOG Constraint

Perform a simulation run with the following options: reliability “ON” and
MOG “ON.” The delivery profile graph now takes into account the uneven arrival of
aircraft and the limited resources available to repair the non-mission capable aircraft.

This effect can be adjusted by changing the MOG efficiency factor. As shown is Figure
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VI-2, the end result is that all cargo will not be delivered until about day 43. One
interesting observation is that on day 26, the optimization model has delivered all the

cargo, but the simulation still has 35,000 stons to deliver, or approximately 17 percent.
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Figure VI-2: Simulation Delivery Profile Comparison. The deterministic model
(MOGE(ff = 1.00) is used as input into the simulation model.
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2. Results

Using this approach, Appendix F contains six similar graphs with MOG efficiency
factors of 0.50, 0.60, 0.70, .080, 0.90 and 1.00. The effect of the MOG constraint is
negligible when a MOG efficiency factor of 0.50 is used. But operating the airfields at
half capacity is unrealistic because the airlift system would be dramatically underutilized.
On the other hand, the effect of the MOG constraint is significant when a MOG
efficiency factor of 1.00 is used. By examining the graphs in Appendix F, one can
conclude that the best MOG efficiency factor is approximately 0.70 or 0.80. Also if the
six delivery profile graphs (MOG “ON” and Reliability “ON”) are compared, the graphs
corresponding to MOG efficiency factors of 0.70 and 0.80 deliver more cargo when the
airlift infrastructure is MOG constrained.

Another output from the simulation model is the landing profile at offload
airfields versus time. This graph piots the total number of landings at the offload
airfields versus time. Using the same approach as the delivery profile graphs, the landing
profile graphs in Appendix D are obtained. Once again, the best MOG efficiency factor

to use is either 0.70 or 0.80.
C. ANALYSIS OF DETERMINISTIC OPTIMIZATION MODEL

The assumptions and limitations of the deterministic optimization model were
discussed in Chapter II, Section B. One limitation of the model is the discrete time

periods. Specifically, the model enforces the MOG constraint for each airfield using the
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discrete time periods. With one-day time periods, the model can route aircraft in a
manner that causes local congestion. For example, all aircraft could arrive at an airfield
within a small time window instead of being dispersed over an entire day. In reality this
would cause local congestion, even though the model’s representation of aircraft
handling capacity is observed. Another limitation is that the model rounds the time (to
.the nearest day) at which an aircraft arrives at origin and destination airfields.

To examine this issue of discrete time periods, the simulation model can be used.
One of the simulation output graphs is the number of aircraft that are consuming MOG
resources and those aircraft that need to consume MOG (specifically those aircraft in the
Taxi and Upgrade Queue) resources versus time for each airfield. Two steps are used.
First perform a simulation run with the reliability option “OFF” and the MOG constraint
option “OFF” and obtain the output graph. Examining Figure VI-3 the following points
are illustrated:

e Uneven aircraft arrival. The graph indicates a very non-uniform aircraft
arrival rate at Mildenhall airfield.

e MOG constraint. During the time period from day 10 to 25, the airfield is
MOG constrained according to the deterministic optimization model solution
report. But from day 11 to 12 the simulation model exceeds the one day
MOG limit, but the time period from day 12 to 13 does not. This reflects the
error caused by rounding in the optimization model.

Next perform a simulation run with the reliability option “OFF” and the MOG constraint

option “ON.” Now the simulation model will continuously enforce the MOG constraint,
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unlike the one-day average enforcement by the optimization model. Examining Figure

VI-3 the following points are illustrated:

Up to day seven, both simulation runs track. But then they diverge even
though the airfield is not MOG constrained. This reflects the fact that other
airfields are MOG constrained, thus delaying the arrival of aircraft to
Mildenhall airfield.

From day 23 to 26 the airfield is exceeding the MOG capability of the airfield.
At one point about 80 NB equivalent aircraft are on the ground waiting and
consuming MOG resources.

Another simulation output that is used to examine the deterministic optimization

model is the delivery profile graph. The following steps are taken (see Figure VI-4):

1.

2.

Obtain the delivery profile graph from the deterministic optimization model.

Using the deterministic model solution as input into the simulation, perform a
simulation run with the following options: reliability “OFF” and MOG “OFF.”
This difference in the delivery profile graphs illustrates the effect of the
discrete time periods. In this case, the graph indicates that, on average, there
is a difference of about 10,000 stons.

Perform a simulation run with the following options: reliability “OFF” and
MOG “ON.” The difference in the delivery profile graphs illustrate the effect
of limited MOG resources at the various airfields. In this case, the difference

1s negligible.

Perform a simulation run with the following options: reliability “ON” and
MOG “ON.” The difference in the delivery profile graph illustrates two
effects: the delay caused by aircraft actually breaking and spending more time
on the ground and the delay, if any, as the aircraft wait for the extra MOG
resources required to fix the aircraft. This additional delivery profile graph
can not be used to justify the proper choice of the MOG efficiency factor
since the delay caused by aircraft simply breaking is not related to the MOG
efficiency factor.
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Mildenhall Airfield

Number of Aircraft Waiting For
and Consuming MOG (NB Equiv.)

Days

Mildenhall Airfield

Number of Aircraft Waiting For
and Consuming MOG (NB Equiv.)

14 15 16 17 18 19 20 21 22 23 24 25 26 27

Days

Figure VI-3: Simulation Output Graph of Mildenhall Airfield. The deterministic model
(MOGLff=0.80) is used as input into the simulation model. The solid line
is the simulation run with REL “OFF” and MOG “OFF.” The dash line is
the simulation run with REL “OFF” and MOG “ON.”
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Figure VI-4: Simulation Deliver Profile Comparison. The deterministic model (MOGEff
= 0.80) 1s used as input into the simulation model.
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D. DETERMINISTIC AND STOCHASTIC OPTIMIZATION COMPARISON

Before comparing the two optimization models, the impact of the MOG penalty
in the stochastic optimization model is examined. Using the formulation from Chapter
111, Section D, the MOG penalty can range from 0.001 to 0.26. The total amount of cargo

delivered as a function of the MOG penalty is illustrated in Figure VI-5.

Passengers and Cargo (100 stons)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
MOG Penalty

L—o—stochastic — — — deterministic

Figure VI-5: Total Cargo and Passengers Delivered by the Stochastic Optimization
Model. The deterministic model is solved with a MOG efficiency factor
equal to one.
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To compare the stochastic and deterministic optimization models the following
approach is used. Specify a value for the stochastic MOG penalty and solve the
stochastic optimization model. The solution from the stochastic optimization model,
specifically the deployment schedule, is used as input into the simulation model. The
simulation model is then run with the following options: MOG “ON” and reliability
“ON.” When the simulation has reached steady state the delivery profile graph is
obtained. Using this approach the three delivery profile graphs are obtained using MOG
penalties of 0.00, 0.02 and 0.04 for the stochastic optimization model (see Figure VI-6).
For comparison the same approach is used for obtaining the delivery profile graph for the
deterministic optimization model.

The stochastic optimization model with a MOG penalty equal to zero is
equivalent to solving a modified version of the deterministic model. The modified
deterministic model uses the expected value of the modified repair time, in addition to
the deterministic ground time, for the calculation of MOG consumption. Since the
modified repair time is being used in the calculation of the MOG consumption, the MOG

efficiency factor needs to be set to one.
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Figure VI-6: Simulation Delivery Profile Comparison. The four delivery profile graphs
are obtained by first solving the corresponding optimization model. Then
the solution from the optimization model is used as input into the
simulation model. The simulation is then run with the following options:
MOG “ON” and reliability “ON.”

All four optimization/simulation model runs can be characterized as having three
distinct phases as observed in Figure VI-6. In the first 12 days of the base scenario, the

system is airframe constrained and all four model runs are very similar. But from day 12
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to about day 20, the airlift infrastructure is the limiting factor, specifically airfield
capacity. During this time period all three stochastic models exceed the deterministic
model in the delivery of cargo and passengers. From day 21 and on, the system is in a
sustainment phase with diminished demands. Neither airframes nor airfield capacities
are critical resources. One interesting point illustrated by the graphs is that the schedules
generated by all three stochastic models delivered all the cargo in the simulation model
by day 30; but the deterministic model took an 10 extra days, or an additional one-third
of the required 30 day time span.

Closer examination of the time period from day 12 to day 20 lends some insight
into the power of the stochastic optimization model. When the deterministic
optimization model is solved, the model is operating cn’“u'cal airfields at maximum
capacity during this time period (day 12 to 20). This will allow the optimization model
to deliver the largest amount of cargo. Then the solution from the deterministic
optimization model is used as input into the simulation and the simulation model is run
with the MOG constraint option “ON” and the reliability option “ON.” But when the
simulation gets to this time period all it takes is for one aircraft to break at a MOG
constrained airfield to have a dramatic impact. This aircraft will need to consume a
larger amount of MOG resources resulting in follow-on aircraft waiting on the ground
while this aircraft is being repaired. As more and more aircraft break, the problem just

multiplies as more and more aircraft wait on the ground for MOG resources.
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On the other hand the stochastic optimization model takes a different approach as

illustrated by the followihg three points. First, when the stochastic optimization model is
solved, the model will not operate these critical airfields at maximum capacity because
the associated recourse costs outweigh the benefits. Therefore the stochastic model will
operate the critical airfields at some percentage below their maximum capacity. This
will allow extra MOG resources to be available to repair aircraft as they break. Second,
since the stochastic optimization model will be delivering less cargo during this time
period it will be more selective in determining which units to move. Finally the
stochastic optimization model is re-routing aircraft to minimize the number of unreliable
arrcraft that are using capacity limited airfields. Therefore when the stochastic
optimization model solution is used as input into the simulation, the simulation does not
experience major bottle-necks at these critical airfields and will exceed the deterministic
model in the amount of cargo delivered.

As seen in Figure VI-6 the benefits of the stochastic optimization model take
effect when the infrastructure is MOG constrained. In this case, this is from day 12 to
about day 20 (see Figure VI-7). During this time period, all three stochastic model runs
deliver more cargo than the deterministic model (no matter what number is used for the
MOG efficiency factor, the deterministic model deliver less cargo than the stochastic
model). Figure VI-7 indicates that as the MOG penalty gets larger the stochastic model
delivers less cargo during this time period. But consider the following points:

e As the MOG penalty is increased from 0.00, the delivery profile initially drops

off, but by day 17 all three graphs are nearly the same. At this point the
diminishing demand begins to take effect and all three graphs approach their

93




final delivery amount. If the airlift infrastructure was MOG constrained over
a longer time period, it is possible that a difference might be noted.

e Using the delivery profile graph as a measure of effectiveness does not
directly reflect the value of the stochastic optimization model. Another
possible measure would be the probability that an airfield exceeds its capacity
in a given time period.
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Deterministic Model (MOGEff =1.00)

— — — Stochastic Model (MOG Penalty = 0.00)
------ Stochastic Model (MOG Penalty = 0.02)
——— Stochatic Model (MOG Penalty = 0.04)

Figure VI-7: Simulation Delivery Profile Graph. The four delivery profile graphs are
obtained by first solving the corresponding optimization model. Then the
solution from the optimization model is used as input into the simulation
model. The simulation is then run with the following options: MOG “ON”
and reliability “ON.”
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Another difference is found between the stochastic and deterministic optimization
solutions. Examining the time period from day 12 to day 20, Table VI-3 shows the

percent of X orders (airlift missions) flown by each aircraft type.

Model C5 C17 C141 C130 P747 C747
deterministic 241 7.5 37.6 22.6 3.7 4.4
stochastic (pen = 0.00) 25.9 7.6 18.9 34.8 6.3 6.5
stochastic (pen = 0.04) 26.3 8.7 10.7 38.4 8.5 7.4

Table VI-3: Percent of X orders (airlift missions) flown by each aircraft type
from day 12 to day 20.

The following points explain the results obtained in Table VI-3.

e Break rate data is not available for the C130, P747, and C747 and therefore were
modeled as perfectly reliable aircraft. Relative to this, we have considerable
insight as to why the models behave the way they do.

¢ The stochastic model (MOG penalty = 0.00) differs from the deterministic model
only in that the ground times of the C5, C17, and C141 are increased by the
expected value of the modified repair time random variable. Therefore the C130,
P747 and C747 are, relatively speaking, more attractive in the stochastic model
(MOG penalty = 0.00); this is why their usage increases. From Jensen's inequality
the expected value will provide an optimistic prediction of an aircraft's
performance relative to using the probability distribution. Thus the C130, P747,
and C747 are again, relatively speaking, more attractive when we move from the
stochastic model (MOG penalty = 0) to the stochastic model (MOG penalty =
0.04); this is why the usage of the perfectly reliable aircraft again increases.

e Why does the C130 appear to displace the C141 as opposed to the C17 or C5 (the
other two aircraft with stochastic ground times)? The C130 and C141 can both

carry bulk and over but not out-sized cargo. To move the outsized cargo we need
the C5 and C17.

e The C130 is a very slow (block speed) aircraft and is not usually even regarded as
a strategic airlifter. The results do not suggest that the C130 is the answer to the
strategic airlift problem. There are a couple of unique characteristics of this base
scenario. First, there is the perfectly reliable assumption for the C130 aircraft.
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Second, a large fraction of the total movement in this 30 day scenario is from
Ramstein to Saudi Arabia; the fact that this is (in strategic airlift terms) such a
short distance makes the C130 more of a player than it might otherwise be.
Finally, the fact that the theater is operating at MOG capacity means that the slow
block speed does not slow down throughput as much as it might otherwise.

In summary the stochastic optimization model, in addition to the features of
Throughput 11, accomplishes the following:
* Selection of aircraft routes by anticipating potential bottlenecks in the system.

¢ Minimizes the number of unreliable aircraft that use capacity limited airfields
or airfields that have limited repair capability.

* Operating critical airfields at a percentage below their maximum capacity in
order to have excess MOG resources available to repair aircraft as they break.
This allows the stochastic optimization model to achieve a flow of cargo to
the theater that is not interrupted by the random events of aircraft reliability.
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Vil. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

A stochastic extension has successfully been added to the Throughput II model to
account for aircraft reliability. This stochastic extension results in a two-stage stochastic
optimization model with recourse.

The stochastic optimization model can be used to gain broad insights into the
strategic airlift system. Some of the broad insights that can be gained by including
aircraft reliability are the change in fleet mix and the re-routing of aircraft compared to
the deterministic optimization model. But most important of all is the fast turn-around of
the stochastic optimization model. This allows quick answers without tying down a
massive amount of manpower or computer resources.

In addition the airlift infrastructure has also been modeled by a discrete-event
simulation model. This allows the user to analyze the recommended deployment
schedule from the deterministic and stochastic optimization models. The simulation will
also allow the user to analyze a given deployment schedule and examine the effects of

MOG and aircraft reliability.
B. RECOMMENDATIONS

The following are some recommendations based on the analysis completed in

Chapter V1.
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1. MOG Efficiency Factor

Using the simulation model to analyze the deterministic model, Chapter VI

estimated a reasonable value of 0.80 for the MOG efficiency factor.
2. Modification to Deterministic Optimization Model

The current form of the deterministic optimization model is overly optimistic.
Even though ti]e MOG efficiency factor can be used to lessen the impact of random
ground times, it does not take into account aircraft reliability. To account for aircraft
reliability, the deterministic model can be modified by using the expected value of the
modified repair time, in addition to the standard ground time, for the calculation of MOG
consumption. Since the modified repair time is being used in the calculation of the MOG
consumption, the MOG efficiency factor needs to be set to one. Now the model takes
into account aircraft reliability and the analysts can examine the effect of aircraft

reliability on the mix of aircraft used and the re-routing of aircraft.
3. Stochastic Optimization Model

The next step is to solve the stochastic optimization model with a larger data set.
This thesis examined a 30 day scenario, but during this time span the airlift infrastructure
was MOG constrained only for a period of eight days. The effects of the stochastic

optimization should be more evident if a larger problem is used for analysis.
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APPENDIX A. THROUGHPUT Il MODEL

The following is a brief summary of Throughput II (Morton et. al., 1995).

A. INDICES
u indexes units, e.g., 82nd Airborne
a indexes aircraft types, e.g., C5, C141
nt’ index time periods
b indexes all airfields (origins, enroutes and destinations)
i indexes origin airfields
k indexes destination airfields
r indexes routes

B. INDEX SETS

1. Airfield Index Sets

B : set of available airfields
IcB origin airfields
KcB destination airfields

2. Aircraft Index Sets

A set of available aircraft types

ApuncA aircraft capable of hauling bulk size cargo
AoverCApu - aircraft capable of hauling over-sized cargo
AouTAsver  aircraft capable of hauling out-sized cargo

Bulk cargo is palletized on 88 x 108 inch platforms, which can fit on any plane.

Over-sized cargo is non-palletized rolling stock; it is larger than bulk cargo and can fit on
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a C141, C5 or C17. Out-sized cargo is very large non-palletized cargo that can fit into a

C5 or C17 but not a C141.

3. Route Index Sets

R set of available routes

R.cR permissible routes for aircraft a

RucR, permissible routes for aircraft a that use airfield b

R.CR, permissible routes for aircraft a that have origin / and destination &
DR,cR delivery routes that originate from origin

RR,cR recovery routes that originate from destination &

4, Time Index Set

T set of time periods

TyarT possible launch times of sorties for unit # using aircraft @ and route »

The set 7, covers the allowed time window for unit », which starts on the unit’s
available-to-load date and ends on the unit’s required delivery date, plus some extra time

up to the maximum allowed lateness for the unit.

C. GIVEN DATA

1. Movement Requirements Data

MovePAX,; Troop movement requirement for unit » from origin / to
destination k&

MoveUE,;. Equipment movement requirement in short tons (stons) for unit u
from origin / to destination '

ProBulk, Proportion of unit « cargo that is bulk-sized

ProQver, Proportion of unit v cargo that is over-sized
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ProOut, Proportion of unit « cargo that is out-sized
2. Penalty Data

LatePenUE,  Lateness penalty (per ston per day) for unit # equipment
Lc;tePenPAXu Lateness penalty (per soldier per day) for unit « troops
NoGoPenUE, Non-delivery penalty (per ston) for unit # equipment
NoGoPenPAX, Non-delivery penalty (per soldier) for unit u troops
MaxLate Maximum allowed lateness (in days) for delivery

Preserve,, Penalty (small artificial cost) for keeping aircraft a in mobility
system at time 7

3. Cargo Data

UESqFt, Average cargo floor space (in sq. ft) per ston of unit u
equipment

PAXWz, Average weight of a unit » soldier inclusive of personal
equipment

4. Aircraft Data

Supply,, Number of aircraft of type a that become available at time ¢
MaxPAX, Maximum troop carriage capacity of aircraft a

PAXSqFt,, Average cargo space (in sq. ft.) consumed by a unit « soldier fro

aircraft a
ACSqF1, Cargo floor space (in sq. ft.) of aircraft a
Loadlff, Cargo space loading efficiency (<1) for aircraft a. This accounts

for the fact that it is not possible in practice to fully utilize the
cargo space.
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URate, Established utilization rate (flying hours per aircraft per day) for
aircraft a

5. Airfield Data

MOGCap, Aircraft capacity (in narrow-body equivalents) at airfield b

MOGReq,, Conversion factor to narrow-body equivalents for one aircraft of
type a at airfield b
MOGEff MOG efficiency factor (<1), to account for the fact that it is

impossible to fully utilize available MOG capacity due to
randomness of ground times

6. Aircraft Route Performance Data

MaxLoad, Maximum payload (in stons) for aircraft a flying route »

GTimey, Aircraft ground time (due to onload or offload of cargo,
refueling, maintenance, etc.) needed for aircraft « at airfield 4 on
route r

DTime , Cumulative time (flight time plus ground time) taken by aircraft

a to reach airfield 4 along route r

FltTime,, Total flying hours consumed by aircraft @ on route r
CTime,, Cumulative time (flight time plus ground time) taken by aircraft
a on route r

DaysLate,,, ~ Number of days late unit #’s requirement would be if delivered
by aircraft a via route r with mission start time ¢

DECISION VARIABLES

1. Sortie Variables

Xyart Number of aircraft a that airlift unit # via route » with mission
start time during period ¢
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Number of aircraft a that recover from a destination airfield via
route r with start time during period ¢

2. Aircraft Allocation and De-allocation Variables

Allorait

Release,;,

Number of aircraft @ that become available at time ¢ that are
allocated to origin i

Number of aircraft a available at origin / in time ¢ that are not
scheduled for any flights from then on

3. Aircraft Inventory Variables

Hai
HPakt

NPlanes,,

Number of aircraft a inventoried at origin / at time ¢
Number of aircraft a inventoried at destination k at time ¢

Number of aircraft @ in the air mobility system at time ¢

4. Airlift Quantity Variables

TonsUE,

TPAXuarI

Total stons of unit » equipment airlifted by aircraft a via route r
with mission start time during period ¢

Total number of unit  troops airlifted by aircraft a via route r
with mission start time during period ¢

5. Elastic (Nondelivery) Variables

UENoGo,;;

PAXNoGo,i

Total stons of unit ¥ equipment with origin / and destination k
that is not delivered in the prescribed time frame

Number of unit u troops with origin / and destination & who are
not delivered in the prescribed time frame
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E. OBJECTIVE
minimize
Y>> N LatePenUE,* DaysLate,,,* TonsUE,,, (A.1)

u a reR, tel,

+3. 3 Y Y LatePenPAX *DaysLate,, * TPAX,,,,
u a reRtel,,

+3. 3 Y (NoGoPenUE,* UEN0Go,,, + NoGoPenPAX ,* PAXNoGo,, )
u ik

+2 z Preserve, * NPlanes,,
a i

The objective function minimizes the total weighted penalties incurred for late
deliveries and non-deliveries. The model’s secondary objective is to choose a feasible

solution that maximizes unused aircraft.

F. CONSTRAINTS

Y Y Y TonsUE,,, + UENoGo,, = MoveUE,,, (A2)

aedyu reRy, 16T,

Y u,i,k: MoveUE , >0
Y. > > TonsUE,,, + UENoGo,, > ProOut,* MoveUE,,., (A.3)
acA,, reR,, tel,
V u,i,k: MoveUE , >0
> Y Y TonsUE,,, + UENoGo,, > (A4)

aed,, reR, tel,,

(ProOver, + ProOut )« MoveUE ,,, N u,i,k: MoveUE,, >0
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S > Y TPAX,  +PaxNoGo,, = MovePAX,,,

a reR,; tel,,

Y u,i,k: MovePAX , >0

Z Z Xuart + Hai: + Releasea” =

r reDR,

H

ai,t—1

+Allot,, + Y. Y., Ya,it

reR, t'+[CTime, 1=t

z Y;rl +H]::1Lr HPaLt 1+2 2 2 uart' > Va,k,t

reRR,

u reRy, el
t'+[CTime,, 1=t

2".2 Allot, < Z Supply,,, Ya,t

NPlanes,, = iz Allot ;. — 2"2 Release,,., Va,t

t'=l i

{

YN Kam,*.X

reR,t’=1 u

+Z§:HPW,
k o1'=1

where

K

artt’

t'=1 i

-+ zzKam art’ zZHait'

reR, t'=] i =]

1
< 2 NPlanes,,, Va,t
1'=1

(—t'+1, if <t <t’+CTime,, -1
CTlime,, if 12"+ CTime, —1
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(A.8)

(A.9)
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TPAX,,, < MaxPAX *X,,,, VYua,rttel, (A.11)
TonsUE ,,, + PAXWt+TPAX ,,,, < MaxLoad %X ,,, (A.12)
Vuarttel,
PAXSqFt,*TPAX,,, + UESqFt,* TonsUE,,, < (A.13)
ACSqFt, * LoadEff . * X s » Vuarttel,
N3N FitTime,xX,,, + 3.3 FltTime,, *Y,, < (A.14)
u reR,tel,, reR, t
2 URate,* NPlanes,, Va
! -
3¥Y Y .(MOGReq,*GTime,, |24+ X, (A.15)
T DT 11

+y > Z(MOGReqab*GTimeab, /28)+Y,.

a reR, t'+[DTime,,, |=t

< MOGLff * MOGCap,, V b,t

A.2 Demand satisfaction constraints for ail classes of cargo
A.3 Demand satisfaction constraints for out-sized cargo
A.4 Demand satisfaction constraint for over-sized cargo
A.5 Demand satisfaction for troops

A.6 Aircraft balance constraints at origin airfields

A.7 Aircraft balance constraints at destination airfields
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A.8 Aircraft balance constraints for allocations to origins

A.9 Aircraft balance constraints accounting for allocations and releases
A.10 Cumulative aircraft balance constraints

A.11 Troop carriage capacity constraints

A 12 Maximum payload constraints

A.13 Cargo floor space constraints

A.14 Aircraft utilization constraints

A.15 Airfield MOG constraints
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APPENDIX B. AIRCRAFT BREAK AND FIX RATES FOR 1994

BREAK
BREAKS |LANDINGS| " o
Cc5 B
JAN | a1 323 12,69
FEB 46 325 14.15
MAR 53 431 12.30
APR 64 499 12.83
MAY 51 440 11.59
JUN 83 384 21.61
JUL 60 443 13.54
AUG 53 419 12.65
SEP 37 346 10.69
oCT 56 369 15.18
NOV 67 462 14.50
DEC 36 366 9.84
C-141
JAN 126 669 18.83
FEB 127 773 16.43
MAR 188 - 1085 17.33
APR 153 1169 13.09
MAY 143 1056 13.54
JUN 161 977 16.48
JUL 143 1128 12.68
AUG 117 1144 10.23
SEP 155 971 15.96
OCT 190 1045 18.18
NOV 163 1167 13.97
DEC 150 1014 14.79
C-17
JAN 0 16 0.00
FEB_ | 5 35 1429
MAR 8 38 21.05
APR 3 60 5.00
MAY 7 69 10.14
~_JUN 3 54 5.56
JUL | 4 71 5.63
~AUG | 4 94 426
_SEP 0 83 | 000 |
OCT | 6 1271 | 472
NOV_ 10106 943
DEC 8 89 899
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FIX FIX FIX FIX
FIX RATE FIX RATE FIX RATE FIX RATE
0-4 4-8 8-12 12-16
HRS 0-4 HRS 4-8 HRS 8-12 HRS 12-16
HRS HRS HRS HRS
C-5
JAN 8 19.5 8 19.5 6 14.6 4 9.8
FEB 8 17.4 6 13.0 6 13.0 6 13.0
MAR 14 26.4 17 32.1 8 15.1 3 5.7
APR 16 25.0 18 28.1 5 7.8 11 17.2
MAY 15 29.4 11 216 3 5.9 5 9.8
JUN 11 13.3 16 19.3 11 13.3 9 10.8
JUL 15 25.0 15 25.0 6 10.0 7 11.7
AUG 14 26.4 9 17.0 7 13.2 6 11.3
SEP 10 27.0 10 27.0 4 10.8 4 10.8
OoCT 17 30.4 11 19.6 7 12.5 5 8.9
NOV 15 22.4 11 16.4 8 11.9 11 16.4
DEC 5 13.9 9 25.0 8 22.2 5 13.9
C-141
JAN 50 39.7 27 21.4 18 14.3 11 8.7
FEB 40 31.5 27 21.3 37 29.1 7 5.5
MAR 77 41.0 42 223 29 15.4 15 8.0
APR 65 425 49 32.0 18 11.8 13 8.5
MAY 65 455 43 30.1 15 10.5 10 7.0
JUN 74 46.0 44 27.3 20 12.4 9 5.6
JUL 60 42.0 27 18.9 16 11.2 15 10.5
_AUG | 68 . 581 13 .| 111 14 120 3 26
~ SEP 65 | 419 31 | 200 19 123 | 14 90
OoCT 63 33.2 52 27.4 33 17.4 15 7.9
NOV 61 37.4 25 15.3 17 10.4 15 9.2
DEC 50 33.3 32 21.3 22 14.7 20 13.3
c-17
JAN 0 0.0 0 0.0 0 0 0 0
FEB 1 20.0 0 0.0 1 20 0 0
MAR 3 375 0 0.0 0 0 2 25
APR 2 66.7 0 0.0 0 0 0 0
~ MAY 2 28.6 2 28.6 0 0 0 0
JUN 1 | 333 1 333 | 0 0 0 0
| JuL 3 75.0 0O { 00 | o© 0 0 0
AUG 0O . 00 1 250 | 0 | o0 0 0
__SEP 0 . 00 0 060 ' 0 | o0 | 0o | O
ocr 4 667 , 0 00 | O ' O . O ! 0
NOV 4 " 400 1 1100 110 | 0 0
DEC = 3 37.5 2 250 | O | O | © 0
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FIX FIX FIX FIX
FX | rate | FX | rate | P rate | P | Rrate
16-24 24-48 48-72 >72
irs | 1824 | R | 2448 | 0O 4872 | ol >72
HRS HRS HRS HRS
2 4.9 10 24.4 1 2.4 5 12.2
8 17.4 8 17.4 1 2.2 3 6.5
7 132 3 57 1 1.9 0 0.0
5 78 7 10.9 2 31 0 0.0
4 7.8 7 137 4 7.8 2 39
6 7.2 6 7.2 5 6.0 3 36
2 33 10 16.7 3 5.0 2 33
9 17.0 7 132 0 0.0 1 1.9
2 54 6 16.2 1 27 0 0.0
6 10.7 8 143 1 1.8 1 1.8
6 9.0 13 194 0 0.0 3 45
4 11.1 5 13.9 0 0.0 0 0.0
9 7.1 5 4.0 3 2.4 1 08
7 55 4 3.1 1 08 4 3.1
12 6.4 11 59 2 1.1 0 0.0
6 39 1 07 1 07 0 0.0
5 35 5 35 0 0.0 0 0.0
5 3.1 5 3.1 1 06 2 1.2
14 98 7 49 4 238 0 0.0
11 9.4 4 34 2 1.7 2 1.7
15 97 7 45 2 1.3 2 1.3
6 32 13 6.8 0 0.0 0 0.0
13 8.0 17 104 4 25 1 06
8 53 8 53 6 4.0 4 27
0 0.0 0 0.0 0 0.0 0 0.0
1 20.0 2 40.0 0 00 0 0.0
1 125 | 1 | 125 1 12.5 0 0.0
0 00 0 | 00 0 00 1 333
o .60 i o0 | 00 | O | 00 0 0.0
1 333 0 00 0 0.0 0 0.0
0 00 1 250 0 0.0 0 0.0
1 250 0 | 00 1 25.0 1 25.0
o0 0.0 0 | 00 1 0.0 0 0.0
1 16.7 1187 1 16.7 0 0.0
1 100 3 300 | 1 10.0 0 0.0
1 125 1 125 1 125 0 0.0
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APPENDIX C. BENDERS DECOMPOSITION CALCULATIONS

This appendix calculates the cut gradient and intercept expressions used in
Benders algorithm for solving the stochastic optimization model. As shown in Chapter

1V, Section C, the algorithm will add the following cuts at each iteration
-G, x+0,, >2g, Vbt (C.1)

Since x represents the first-stage decision variables used in the Throughput II model,

constraint (C.1) is equivalent to -

zzz Gtibl*Xuarl' +22 G;b,*y;,,,» +9bt Zg;,, v bvt' (Cz)

a r t a r t

To calculate expressions for G.,, and g;,, the first step is to take the dual of the recourse

function. In this case, the primal is

hy (x,0) = rgni’n MOGPEN ,,* R® (C3)
b1

subject to
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(1) Y X3 3 [MOGReq,,*(GTime,, + MRTimeg, )/ 24} X .0,
-

u a r

+ 3. >. > [ MOGReq,,*(GTime,, + MRTime3, )| 24},
a r

- R;, < MOGCap,

(2) R®>20.

The dual of the recourse function is

h,,,(x,a)) = max (C4)
-~ MOGCAP,
153 +3 3 3 Y [MOG Req,, *(GTime,,, + MRTimes, )/ 24} X, ¢
. u a r I
+Y ¥ ¥ | MOGReq,,*(GTime,, + MRTime,)/ 24}+Y,,
L a r

subject to
(1) A%, < MOGPEN,,

(2) 2% >0.
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From the L-Shaped Algorithm for stochastic programming (Morton,1994), we know

G'=E,n°B° and g' =E_rn°d® where m“° denotes the optimal dual vector.

Application to this model yields the following expression the cut gradient
G; = E,myB® = E, X MOGReq,,*(GTime,,, + MRTimeS, )/ 24 (C.5)

and the following for the cut intercept
g, =E,mod® = E A5 (- MOGCap,). (C.6)

The solution to the dual problem will depend on two possible conditions that can exist.

In the first case, if there is no MOG violation at airfield b, time period ¢ and scenario w,
the corresponding recourse variable R;, will equal zero. In this case, the corresponding
dual variable A}, is equal to zero. On the other hand, if there is a MOG violation at
airfield b, time period 7 and scenario @, the corresponding recourse variable R;, will be
greater than zero. In this case, the corresponding dual variable A}, is equal to
MOGPEN,. In summary, we have

Conditionl: R, =0 A, =0 (C.7)

ConditionII: R, >0 A%, = MOGPEN,, . (C.8)
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APPENDIX D. SIMULATION EVENT DIAGRAMS

Appendix D contains the event diagrams for the simulation model. The following
abbreviations are used:

MC mission capable, aircraft not broken

MRT  modified repair time realization

RT repair time realization.
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Figure D-1: Allot Order Event Diagram.
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Figure D-3: X Order Event Diagram.
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Figure D-4: Y Order Event Diagram.
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Figure D-5: Land Event Diagram.
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APPENDIX E. MOG EFFICIENCY FACTOR - LANDINGS
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APPENDIX F. MOG EFFICIENCY FACTOR - STONS
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